相关习题
 0  125585  125593  125599  125603  125609  125611  125615  125621  125623  125629  125635  125639  125641  125645  125651  125653  125659  125663  125665  125669  125671  125675  125677  125679  125680  125681  125683  125684  125685  125687  125689  125693  125695  125699  125701  125705  125711  125713  125719  125723  125725  125729  125735  125741  125743  125749  125753  125755  125761  125765  125771  125779  366461 

科目: 来源:第2章《二次函数》中考题集(45):2.7 最大面积是多少(解析版) 题型:解答题

如图,△ABC是一块锐角三角形余料,边BC=120mm,高AD=80mm,要把它加工成长方形零件PQMN,使长方形PQMN的边QM在BC上,其余两个顶点P,N分别在AB,AC上.
(Ⅰ)求这个长方形零件PQMN面积S的最大值;
(Ⅱ)在这个长方形零件PQMN面积最大时,能否将余下的材料△APN,△BPQ,△NMC剪下再拼成(不计接缝用料及损耗)与长方形PQMN大小一样的长方形?若能,试给出一种拼法;若不能,试说明理由.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(45):2.7 最大面积是多少(解析版) 题型:解答题

已知:抛物线y=-x2+mx+2m2(m>0)与x轴交于A、B两点,点A在点B的左边,C是抛物线上一个动点(点C与点A、B不重合),D是OC的中点,连接BD并延长,交AC于点E.
(1)用含m的代数式表示点A、B的坐标;
(2)求的值;
(3)当C、A两点到y轴的距离相等,且S△CED=时,求抛物线和直线BE的解析式.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(45):2.7 最大面积是多少(解析版) 题型:解答题

已知抛物线y=ax2+bx+c与y轴交于点A(0,3),与x轴分别交于B(1,0)、C(5,0)两点.
(1)求此抛物线的解析式;
(2)若点D为线段OA的一个三等分点,求直线DC的解析式;
(3)若一个动点P自OA的中点M出发,先到达x轴上的某点(设为点E),再到达抛物线的对称轴上某点(设为点F),最后运动到点A′求使点P运动的总路径最短的点E、点F的坐标,并求出这个最短总路径的长.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(45):2.7 最大面积是多少(解析版) 题型:解答题

如图,在平面直角坐标系中,以点0′(-2,-3)为圆心,5为半径的圆交x轴于A、B两点,过点B作⊙O′的切线,交y轴于点C,过点0′作x轴的垂线MN,垂足为D,一条抛物线(对称轴与y轴平行)经过A、B两点,且顶点在直线BC上.
(1)求直线BC的解析式;
(2)求抛物线的解析式;
(3)设抛物线与y轴交于点P,在抛物线上是否存在一点Q,使四边形DBPQ为平行四边形?若存在,请求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(45):2.7 最大面积是多少(解析版) 题型:解答题

已知:⊙P是边长为6的等边△ABC的外接圆,以过点A的直径所在直线为x轴,以BC所在直线为y轴建立平面直角坐标系,x轴与⊙P交于点D.
(1)求A,B,D三点坐标.
(2)求过A,B,D三点的抛物线的解析式.
(3)⊙P的切线交x轴正半轴于点M,交y轴正半轴于点N,切点为点E,且∠NMO=30°,试判断直线MN是否过抛物线的顶点?并说明理由.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(45):2.7 最大面积是多少(解析版) 题型:解答题

如图,在平面直角坐标系xOy中,已知矩形OACB的边OA,OB分别在x轴上和y轴上,线段OA,OB的长分别是一元二次方程x2-18x+72=0的两个根,且OA>OB;点P从点O开始沿OA边匀速移动,点M从点B开始沿BO边匀速移动.如果点P,点M同时出发,它们移动的速度相同,设OP=x(0≤x≤6),设△POM的面积为y.
(1)求y与x的函数关系式;
(2)连接矩形的对角线AB,当x为何值时,以P,O,M为顶点的三角形与△AOB相似;
(3)当△POM的面积最大时,将△POM沿PM所在直线翻折后得到△PDM,试判断D点是否在矩形的对角线AB上,请说明理由.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(45):2.7 最大面积是多少(解析版) 题型:解答题

如图,已知O为坐标原点,∠AOB=30°,∠ABO=90°,且点A的坐标为(2,0).
(1)求点B的坐标;
(2)若二次函数y=ax2+bx+c的图象经过A、B、O三点,求此二次函数的解析式;
(3)在(2)中的二次函数图象的OB段(不包括点O、B)上,是否存在一点C,使得四边形ABCO的面积最大?若存在,求出这个最大值及此时点C的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(45):2.7 最大面积是多少(解析版) 题型:解答题

已知抛物线y=-x2+2(k-1)x+k+2与x轴交于A、B两点,且点A在x轴的负半轴上,点B在x轴的正半轴上.
(1)求实数k的取值范围;
(2)设OA、OB的长分别为a、b,且a:b=1:5,求抛物线的解析式;
(3)在(2)的条件下,以AB为直径的⊙D与y轴的正半轴交于P点,过P点作⊙D的切线交x轴于E点,求点E的坐标.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(45):2.7 最大面积是多少(解析版) 题型:解答题

如图所示,在平面直角坐标中,抛物线的顶点P到x轴的距离是4,抛物线与x轴相交于O、M两点,OM=4;矩形ABCD的边BC在线段的OM上,点A、D在抛物线上.
(1)请写出P、M两点坐标,并求出这条抛物线的解析式;
(2)设矩形ABCD的周长为l,求l的最大值;
(3)连接OP、PM,则△PMO为等腰三角形,请判断在抛物线上是否存在点Q(除点M外),使得△OPQ也是等腰三角形,简要说明你的理由.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(45):2.7 最大面积是多少(解析版) 题型:解答题

已知二次函数的图象经过(0,0),(1,-1),(-2,14)三点.
(1)求这个二次函数的解析式;
(2)设这个二次函数的图象与直线y=x+t(t≤1)相交于(x1,y1),(x2,y2)两点(x1≠x2).
①求t的取值范围;
②设m=y12+y22,求m与t之间的函数关系式及m的取值范围.

查看答案和解析>>

同步练习册答案