相关习题
 0  125594  125602  125608  125612  125618  125620  125624  125630  125632  125638  125644  125648  125650  125654  125660  125662  125668  125672  125674  125678  125680  125684  125686  125688  125689  125690  125692  125693  125694  125696  125698  125702  125704  125708  125710  125714  125720  125722  125728  125732  125734  125738  125744  125750  125752  125758  125762  125764  125770  125774  125780  125788  366461 

科目: 来源:第2章《二次函数》中考题集(41):2.7 最大面积是多少(解析版) 题型:解答题

已知抛物线y=ax2+bx+2与x轴相交于点A(x1,0),B(x2,0)(x1<x2),且x1,x2是方程x2-2x-3=0的两个实数根,点C为抛物线与y轴的交点.
(1)求a,b的值;
(2)分别求出直线AC和BC的解析式;
(3)若动直线y=m(0<m<2)与线段AC,BC分别相交于D,E两点,则在x轴上是否存在点P,使得△DEP为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(41):2.7 最大面积是多少(解析版) 题型:解答题

如图,在直角坐标系中,O为坐标原点,平行四边形OABC的边OA在x轴上,∠B=60°,OA=6,OC=4,D是BC的中点,延长AD交OC的延长线于点E.
(1)画出△ECD关于边CD所在直线为对称轴的对称图形△E1CD,并求出点E1的坐标;
(2)求经过C、E1、B三点的抛物线的函数表达式;
(3)请探求经过C、E1、B三点的抛物线上是否存在点P,使以点P、B、C为顶点的三角形与△ECD相似?若存在这样的点P,请求出点P的坐标;若不存在这样的点P,请说明理由.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(41):2.7 最大面积是多少(解析版) 题型:解答题

如图,边长为4的正方形OABC的顶点O为坐标原点,点A在x轴的正半轴上,点C在y轴的正半轴上.动点D在线段BC上移动(不与B,C重合),连接OD,过点D作DE⊥OD,交边AB于点E,连接OE.
(1)当CD=1时,求点E的坐标;
(2)如果设CD=t,梯形COEB的面积为S,那么是否存在S的最大值?若存在,请求出这个最大值及此时t的值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(41):2.7 最大面积是多少(解析版) 题型:解答题

如图抛物线y=,x轴于A、B两点,交y轴于点C,顶点为D.
(1)求A、B、C的坐标;
(2)把△ABC绕AB的中点M旋转180°,得到四边形AEBC:
①求E点坐标;
②试判断四边形AEBC的形状,并说明理由;
(3)试探索:在直线BC上是否存在一点P,使得△PAD的周长最小?若存在,请求出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(41):2.7 最大面积是多少(解析版) 题型:解答题

如图,直线y=-x+2与x轴交于点C,与y轴交于点B,点A为y轴正半轴上的一点,⊙A经过点B,O,直线BC交⊙A于点D.
(1)求点D的坐标.
(2)以OC为直径作⊙O',连接AD,直线AD与⊙O'相切吗?为什么?
(3)过O,C,D三点作抛物线,在抛物线的对称轴上是否存在一点P,使线段PO与PD之差的值最大?若存在,请求出这个最大值和点P的坐标,若不存在,请说明理由.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(41):2.7 最大面积是多少(解析版) 题型:解答题

(附加题)已知抛物线y=x2+kx+b经过点P(2,-3),Q(-1,0).
(1)求抛物线的解析式;
(2)设抛物线顶点为N,与y轴交点为A.求sin∠AON的值;
(3)设抛物线与x轴的另一个交点为M,求四边形OANM的面积.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(41):2.7 最大面积是多少(解析版) 题型:解答题

如图,已知抛物线y=-x2+mx+3与x轴的一个交点A(3,0).
(1)你一定能分别求出这条抛物线与x轴的另一个交点B及与y轴的交点C的坐标,试试看;
(2)设抛物线的顶点为D,请在图中画出抛物线的草图.若点E(-2,n)在直线BC上,试判断E点是否在经过D点的反比例函数的图象上,把你的判断过程写出来;
(3)请设法求出tan∠DAC的值.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(41):2.7 最大面积是多少(解析版) 题型:解答题

如图,点O是坐标原点,点A(n,0)是x轴上一动点(n<0).以AO为一边作矩形AOBC,点C在第二象限,且OB=2OA.矩形AOBC绕点A逆时针旋转90°得矩形AGDE.过点A的直线y=kx+m交y轴于点F,FB=FA.抛物线y=ax2+bx+c过点E、F、G且和直线AF交于点H,过点H作HM⊥x轴,垂足为点M.
(1)求k的值;
(2)点A位置改变时,△AMH的面积和矩形AOBC的面积的比值是否改变?说明你的理由.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(41):2.7 最大面积是多少(解析版) 题型:解答题

如图,矩形纸片OABC放在直角坐标系中,使点O为坐标原点,边OA、OC分别落在x轴、y轴的正半轴上,且OA=5,OC=3,将矩形纸片折叠,使点O落在线段CB上,设落点为P,折痕为EF.
(1)当CP=2时,恰有OF=,求折痕EF所在直线的函数表达式;
(2)在折叠中,点P在线段CB上运动,设CP=x(0≤x≤5),过点P作PT∥y轴交折痕EF于点T,设点T的纵坐标为y,请用x表示y,并判断点T运动形成什么样的图象;
(3)请先探究,再猜想:怎样折叠,可使折痕EF最长?并计算出EF最长时的值.(不要求证明)

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(41):2.7 最大面积是多少(解析版) 题型:解答题

已知:抛物线y=-x2+4x-3与x轴相交于A、B两点(A点在B点的左侧),顶点为P.
(1)求A、B、P三点坐标;
(2)在下面的直角坐标系内画出此抛物线的简图,并根据简图写出当x取何值时,函数值y大于零;
(3)确定此抛物线与直线y=-2x+6公共点的个数,并说明理由.

查看答案和解析>>

同步练习册答案