相关习题
 0  125595  125603  125609  125613  125619  125621  125625  125631  125633  125639  125645  125649  125651  125655  125661  125663  125669  125673  125675  125679  125681  125685  125687  125689  125690  125691  125693  125694  125695  125697  125699  125703  125705  125709  125711  125715  125721  125723  125729  125733  125735  125739  125745  125751  125753  125759  125763  125765  125771  125775  125781  125789  366461 

科目: 来源:第2章《二次函数》中考题集(40):2.7 最大面积是多少(解析版) 题型:解答题

如图,已知二次函数y=ax2-2ax+3的图象与x轴交于点A,点B,与y轴交于点C,其顶点为D,直线DC的函数关系式为y=kx+b,又tan∠OBC=1.
(1)求二次函数的解析式和直线DC的函数关系式;
(2)求△ABC的面积.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(40):2.7 最大面积是多少(解析版) 题型:解答题

按如图所示的流程,输入一个数据x,根据y与x的关系式就输出一个数据y,这样可以将一组数据变换成另一组新的数据,要使任意一组都在20~100(含20和100)之间的数据,变换成一组新数据后能满足下列两个要求:
(Ⅰ)新数据都在60~100(含60和100)之间;
(Ⅱ)新数据之间的大小关系与原数据之间的大小关系一致,即原数据大的对应的新数据也较大.
(1)若y与x的关系是y=x+p(100-x),请说明:当p=时,这种变换满足上述两个要求;
(2)若按关系式y=a(x-h)2+k(a>0)将数据进行变换,请写出一个满足上述要求的这种关系式.(不要求对关系式符合题意作说明,但要写出关系式得出的主要过程)

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(40):2.7 最大面积是多少(解析版) 题型:解答题

如图,在直角三角形PMN中,∠MPN=90°,PM=PN=6 cm,矩形ABCD的长和宽分别为6 cm和3 cm,C点和P点重合,BC和PN在一条直线上.令Rt△PMN不动,矩形ABCD向右以每秒1 cm的速度移动,直到C点与N点重合为止.设移动x秒后,矩形ABCD与△PMN重合部分的面积为y cm2
(1)求y与x之间的函数关系式;
(2)求重合部分面积的最大值.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(41):2.7 最大面积是多少(解析版) 题型:解答题

已知抛物线y=mx2-(m-5)x-5(m>0)与x轴交于两点,A(x1,0),B(x2,0)(x1<x2),与y轴交于点C,且AB=6.
(1)求抛物线与直线BC的解析式;
(2)在所给出的直角坐标系中作出抛物线的图象.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(41):2.7 最大面积是多少(解析版) 题型:解答题

如图,已知抛物线l1:y=x2-4的图象与x轴相交于A、C两点,B是抛物线l1上的动点(B不与A、C重合),抛物线l2与l1关于x轴对称,以AC为对角线的平行四边形ABCD的第四个顶点为D.
(1)求l2的解析式;
(2)求证:点D一定在l2上;
(3)?ABCD能否为矩形?如果能为矩形,求这些矩形公共部分的面积(若只有一个矩形符合条件,则求此矩形的面积);如果不能为矩形,请说明理由.
注:计算结果不取近似值.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(41):2.7 最大面积是多少(解析版) 题型:解答题

如图:已知抛物线y=x2+x-4与x轴交于A,B两点,与y轴交于点C,O为坐标原点.
(1)求A,B,C三点的坐标;
(2)已知矩形DEFG的一条边DE在AB上,顶点F,G分别在线段BC,AC上,设OD=m,矩形DEFG的面积为S,求S与m的函数关系式,并指出m的取值范围;
(3)当矩形DEFG的面积S取最大值时,连接对角线DF并延长至点M,使FM=DF.试探究此时点M是否在抛物线上,请说明理由.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(41):2.7 最大面积是多少(解析版) 题型:解答题

如图,已知抛物线y=ax2+4ax+t(a>0)交x轴于A、B两点,交y轴于点C,抛物线的对称轴交x轴于点E,点B的坐标为(-1,0).
(1)求抛物线的对称轴及点A的坐标;
(2)过点C作x轴的平行线交抛物线的对称轴于点P,你能判断四边形ABCP是什么四边形?并证明你的结论;
(3)连接CA与抛物线的对称轴交于点D,当∠APD=∠ACP时,求抛物线的解析式.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(41):2.7 最大面积是多少(解析版) 题型:解答题

已知:m、n是方程x2-6x+5=0的两个实数根,且m<n,抛物线y=-x2+bx+c的图象经过点A(m,0)、B(0,n).
(1)求这个抛物线的解析式;
(2)设(1)中抛物线与x轴的另一交点为C,抛物线的顶点为D,试求出点C、D的坐标和△BCD的面积;
(3)P是线段OC上的一点,过点P作PH⊥x轴,与抛物线交于H点,若直线BC把△PCH分成面积之比为2:3的两部分,请求出P点的坐标.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(41):2.7 最大面积是多少(解析版) 题型:解答题

如图1所示,一张三角形纸片ABC,∠ACB=90°,AC=8,BC=6.沿斜边AB的中线CD把这张纸片剪成△AC1D1和△BC2D2两个三角形(如图所示).将纸片△AC1D1沿直线D2B(AB)方向平移(点A,D1,D2,B始终在同一直线上),当点D1于点B重合时,停止平移.在平移过程中,C1D1与BC2交于点E,AC1与C2D2、BC2分别交于点F、P.
(1)当△AC1D1平移到如图3所示的位置时,猜想图中的D1E与D2F的数量关系,并证明你的猜想;
(2)设平移距离D2D1为x,△AC1D1与△BC2D2重叠部分面积为y,请写出y与x的函数关系式,以及自变量的取值范围;
(3)对于(2)中的结论是否存在这样的x的值使得y=S△ABC;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(41):2.7 最大面积是多少(解析版) 题型:解答题

在平面直角坐标系内有两点A(-2,0),B(,0),CB所在直线为y=2x+b,
(1)求b与C的坐标;
(2)连接AC,求证:△AOC∽△COB;
(3)求过A,B,C三点且对称轴平行于y轴的抛物线解析式;
(4)在抛物线上是否存在一点P(不与C重合),使得S△ABP=S△ABC?若存在,请求出P点坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案