相关习题
 0  125608  125616  125622  125626  125632  125634  125638  125644  125646  125652  125658  125662  125664  125668  125674  125676  125682  125686  125688  125692  125694  125698  125700  125702  125703  125704  125706  125707  125708  125710  125712  125716  125718  125722  125724  125728  125734  125736  125742  125746  125748  125752  125758  125764  125766  125772  125776  125778  125784  125788  125794  125802  366461 

科目: 来源:第2章《二次函数》中考题集(35):2.7 最大面积是多少(解析版) 题型:解答题

如图1,P1、P2、P3、…、Pn分别是抛物线y=x2与直线y=x、y=2x、y=3x、…、y=kx的交点,连接P1P2、P2P3,…,Pk-1Pk
(1)求△OP1P2的面积,并直接写出△OP2P3的面积;
(2)如图2,猜想△OPk-1Pk的面积,并说明理由;
(3)若将抛物线y=x2改为抛物线y=ax2,其它条件不变,猜想△OPk-1Pk的面积(直接写出答案).

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(35):2.7 最大面积是多少(解析版) 题型:解答题

如图,已知二次函数y=ax2+bx+c的图象经过三点A(-1,0),B(3,0),C(0,3),它的顶点为M,又正比例函数y=kx的图象于二次函数相交于两点D、E,且P是线段DE的中点.
(1)求该二次函数的解析式,并求函数顶点M的坐标;
(2)已知点E(2,3),且二次函数的函数值大于正比例函数时,试根据函数图象求出符合条件的自变量x的取值范围;
(3)0<k<2时,求四边形PCMB的面积s的最小值.
【参考公式:已知两点D(x1,y1),E(x2,y2),则线段DE的中点坐标为

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(35):2.7 最大面积是多少(解析版) 题型:解答题

在平面直角坐标系中,△AOB的位置如图所示.已知∠AOB=90°,AO=BO,点A的坐标为(-3,1).
(1)求点B的坐标.
(2)求过A,O,B三点的抛物线的解析式.
(3)设点B关于抛物线的对称轴?的对称点为Bl,连接AB1,求tan∠AB1B的值.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(35):2.7 最大面积是多少(解析版) 题型:解答题

如图,已知直线y=x+8交x轴于A点,交y轴于B点,过A、0两点的抛物线y=ax2+bx(a<O)的顶点C在直线AB上,以C为圆心,CA的长为半径作⊙C.
(1)求抛物线的对称轴、顶点坐标及解析式;
(2)将⊙C沿x轴翻折后,得到⊙C′,求证:直线AC是⊙C′的切线;
(3)若M点是⊙C的优弧(不与0、A重合)上的一个动点,P是抛物线上的点,且∠POA=∠AM0,求满足条件的P点的坐标.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(35):2.7 最大面积是多少(解析版) 题型:解答题

如图,等腰梯形ABCD中,AB=4,CD=9,∠C=60°,动点P从点C出发沿CD方向向点D运动,动点Q同时以相同速度从点D出发沿DA方向向终点A运动,其中一个动点到达端点时,另一个动点也随之停止运动.
(1)求AD的长;
(2)设CP=x,问当x为何值时△PDQ的面积达到最大,并求出最大值;
(3)探究:在BC边上是否存在点M使得四边形PDQM是菱形?若存在,请找出点M,并求出BM的长;不存在,请说明理由.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(35):2.7 最大面积是多少(解析版) 题型:解答题

如图,已知抛物线与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C(0,3).
(1)求抛物线的解析式;
(2)设抛物线的顶点为D,在其对称轴的右侧的抛物线上是否存在点P,使得△PDC是等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由;
(3)点M是抛物线上一点,以B,C,D,M为顶点的四边形是直角梯形,试求出点M的坐标.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(35):2.7 最大面积是多少(解析版) 题型:解答题

如图,在平面直角坐标系中,直线y=-x-与x轴交于点A,与y轴交于点C,抛物线y=ax2-x+c(a≠0)经过A,B,C三点.
(1)求过A,B,C三点抛物线的解析式并求出顶点F的坐标;
(2)在抛物线上是否存在点P,使△ABP为直角三角形?若存在,直接写出P点坐标;若不存在,请说明理由;
(3)试探究在直线AC上是否存在一点M,使得△MBF的周长最小?若存在,求出M点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(35):2.7 最大面积是多少(解析版) 题型:解答题

如图,现有两块全等的直角三角形纸板Ⅰ,Ⅱ,它们两直角边的长分别为1和2.将它们分别放置于平面直角坐标系中的△AOB,△COD处,直角边OB,OD在x轴上.一直尺从上方紧靠两纸板放置,让纸板Ⅰ沿直尺边缘平行移动.当纸板Ⅰ移动至△PEF处时,设PE,PF与OC分别交于点M,N,与x轴分别交于点G,H.
(1)求直线AC所对应的函数关系式;
(2)当点P是线段AC(端点除外)上的动点时,试探究:
①点M到x轴的距离h与线段BH的长是否总相等?请说明理由;
②两块纸板重叠部分(图中的阴影部分)的面积S是否存在最大值?若存在,求出这个最大值及S取最大值时点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(35):2.7 最大面积是多少(解析版) 题型:解答题

如图1,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=5,OC=4.
(1)在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,求D,E两点的坐标;
(2)如图2,若AE上有一动点P(不与A,E重合)自A点沿AE方向E点匀速运动,运动的速度为每秒1个单位长度,设运动的时间为t秒(0<t<5),过P点作ED的平行线交AD于点M,过点M作AE平行线交DE于点N.求四边形PMNE的面积S与时间t之间的函数关系式;当t取何值时,s有最大值,最大值是多少?
(3)在(2)的条件下,当t为何值时,以A,M,E为顶点的三角形为等腰三角形,并求出相应的时刻点M的坐标?

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(35):2.7 最大面积是多少(解析版) 题型:解答题

直线y=-x+6分别与x轴、y轴交于点A、B,经过A、B两点的抛物线与x轴的另一交点为C,且其对称轴为x=3.
(1)求这条抛物线对应的函数关系式;
(2)设D(x,y)是抛物线在第一象限内的一个点,点D到直线AB的距离为d、试写出d关于x的函数关系式,这个函数是否有最大值或最小值?如果有,并求这个值和此时点D的坐标;如果没有,说明理由.

查看答案和解析>>

同步练习册答案