相关习题
 0  125627  125635  125641  125645  125651  125653  125657  125663  125665  125671  125677  125681  125683  125687  125693  125695  125701  125705  125707  125711  125713  125717  125719  125721  125722  125723  125725  125726  125727  125729  125731  125735  125737  125741  125743  125747  125753  125755  125761  125765  125767  125771  125777  125783  125785  125791  125795  125797  125803  125807  125813  125821  366461 

科目: 来源:第2章《二次函数》中考题集(26):2.7 最大面积是多少(解析版) 题型:解答题

如图,抛物线y1=ax2-2ax+b经过A(-1,0),C(0,)两点,与x轴交于另一点B.
(1)求此抛物线的解析式;
(2)若抛物线的顶点为M,点P为线段OB上一动点(不与点B重合),点Q在线段MB上移动,且∠MPQ=45°,设线段OP=x,MQ=y2,求y2与x的函数关系式,并直接写出自变量x的取值范围;
(3)在同一平面直角坐标系中,两条直线x=m,x=n分别与抛物线交于点E、G,与(2)中的函数图象交于点F、H.问四边形EFHG能否成为平行四边形?若能,求m、n之间的数量关系;若不能,请说明理由.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(26):2.7 最大面积是多少(解析版) 题型:解答题

如图,在平面直角坐标系中放置一矩形ABCO,其顶点为A(0,1)、B(-3,1)、C(-3,0)、O(0,0).将此矩形沿着过E(-,1)、F(-,0)的直线EF向右下方翻折,B、C的对应点分别为B′、C′.
(1)求折痕所在直线EF的解析式;
(2)一抛物线经过B、E、B′三点,求此二次函数解析式;
(3)能否在直线EF上求一点P,使得△PBC周长最小?如能,求出点P的坐标;若不能,说明理由.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(26):2.7 最大面积是多少(解析版) 题型:解答题

如图,矩形ABCD的顶点A、B的坐标分别为(-4,0)和(2,0),BC=.设直线AC与直线x=4交于点E.
(1)求以直线x=4为对称轴,且过C与原点O的抛物线的函数关系式,并说明此抛物线一定过点E;
(2)设(1)中的抛物线与x轴的另一个交点为N,M是该抛物线上位于C、N之间的一动点,求△CMN面积的最大值.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(26):2.7 最大面积是多少(解析版) 题型:解答题

已知二次函数y=ax2+bx+c(a≠0)的图象经过O(0,0),M(1,1)和N(n,0)
(n≠0)三点.
(1)若该函数图象顶点恰为M点,写出此时n的值及y的最大值;
(2)当n=-2时,确定这个二次函数的解析式,并判断此时y是否有最大值;
(3)由(1)、(2)可知,n的取值变化,会影响该函数图象的开口方向.请求出n满足什么条件时,y有最小值.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(26):2.7 最大面积是多少(解析版) 题型:解答题

如图,抛物线y=ax2+bx经过点A(4,0),B(2,2).连接OB,AB.
(1)求该抛物线的解析式;
(2)求证:△OAB是等腰直角三角形;
(3)将△OAB绕点O按顺时针方向旋转135°得到△OA′B′,写出△OA′B′的边A′B′的中点P的坐标.试判断点P是否在此抛物线上,并说明理由.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(26):2.7 最大面积是多少(解析版) 题型:解答题

如图所示,抛物线与x轴交于点A(-1,0)、B(3,0)两点,与y轴交于点C(0,-3).以AB为直径作⊙M,过抛物线上一点P作⊙M的切线PD,切点为D,并与⊙M的切线AE相交于点E,连接DM并延长交⊙M于点N,连接AN、AD.
(1)求抛物线所对应的函数关系式及抛物线的顶点坐标;
(2)若四边形EAMD的面积为,求直线PD的函数关系式;
(3)抛物线上是否存在点P,使得四边形EAMD的面积等于△DAN的面积?若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(26):2.7 最大面积是多少(解析版) 题型:解答题

(1)探究新知:
①如图1,已知AD∥BC,AD=BC,点M,N是直线CD上任意两点.
求证:△ABM与△ABN的面积相等.
②如图2,已知AD∥BE,AD=BE,AB∥CD∥EF,点M是直线CD上任一点,点G是直线EF上任一点,试判断△ABM与△ABG的面积是否相等,并说明理由.
(2)结论应用:
如图3,抛物线y=ax2+bx+c的顶点为C(1,4),交x轴于点A(3,0),交y轴于点D,试探究在抛物线y=ax2+bx+c上是否存在除点C以外的点E,使得△ADE与△ACD的面积相等?若存在,请求出此时点E的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(26):2.7 最大面积是多少(解析版) 题型:解答题

如图,已知抛物线y=+bx+c与y轴相交于C,与x轴相交于A、B,点A的坐标为(2,0),点C的坐标为(0,-1).
(1)求抛物线的解析式;
(2)点E是线段AC上一动点,过点E作DE⊥x轴于点D,连接DC,当△DCE的面积最大时,求点D的坐标;
(3)在直线BC上是否存在一点P,使△ACP为等腰三角形?若存在,求点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(26):2.7 最大面积是多少(解析版) 题型:解答题

如图,在平面直角坐标系中,已知点A、B、C的坐标分别为(-1,0),(5,0),(0,2).
(1)求过A、B、C三点的抛物线解析式;
(2)若点P从A点出发,沿x轴正方向以每秒1个单位长度的速度向B点移动,连接PC并延长到点E,使CE=PC,将线段PE绕点P顺时针旋转90°得到线段PF,连接FB.若点P运动的时间为t秒,(0≤t≤6)设△PBF的面积为S;
①求S与t的函数关系式;
②当t是多少时,△PBF的面积最大,最大面积是多少?
(3)点P在移动的过程中,△PBF能否成为直角三角形?若能,直接写出点F的坐标;若不能,请说明理由.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(26):2.7 最大面积是多少(解析版) 题型:解答题

在平面直角坐标系中,已知抛物线y=-x2+bx+c与x轴交于点A、B点A在点B的左侧,与y轴的正半轴交于点C,顶点为E.
(1)若b=2,c=3,求此时抛物线顶点E的坐标;
(2)将(1)中的抛物线向下平移,若平移后,在四边形ABEC中满足S△BCE=S△ABC,求此时直线BC的解析式;
(3)将(1)中的抛物线作适当的平移,若平移后,在四边形ABEC中满足S△BCE=2S△AOC,且顶点E恰好落在直线y=-4x+3上,求此时抛物线的解析式.

查看答案和解析>>

同步练习册答案