相关习题
 0  125632  125640  125646  125650  125656  125658  125662  125668  125670  125676  125682  125686  125688  125692  125698  125700  125706  125710  125712  125716  125718  125722  125724  125726  125727  125728  125730  125731  125732  125734  125736  125740  125742  125746  125748  125752  125758  125760  125766  125770  125772  125776  125782  125788  125790  125796  125800  125802  125808  125812  125818  125826  366461 

科目: 来源:第2章《二次函数》中考题集(24):2.6 何时获得最大利润(解析版) 题型:解答题

某机械租赁公司有同一型号的机械设备40套.经过一段时间的经营发现:当每套机械设备的月租金为270元时,恰好全部租出.在此基础上,当每套设备的月租金每提高10元时,这种设备就少租出一套,且没租出的一套设备每月需支出费用(维护费、管理费等)20元.设每套设备的月租金为x(元),租赁公司出租该型号设备的月收益(收益=租金收入-支出费用)为y(元).
(1)用含x的代数式表示未出租的设备数(套)以及所有未出租设备(套)的支出费;
(2)求y与x之间的二次函数关系式;
(3)当月租金分别为300元和350元时,租赁公司的月收益分别是多少元?此时应该出租多少套机械设备?请你简要说明理由;
(4)请把(2)中所求出的二次函数配方成y=a(x+2+的形式,并据此说明:当x为何值时,租赁公司出租该型号设备的月收益最大?最大月收益是多少?

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(24):2.6 何时获得最大利润(解析版) 题型:解答题

路在山腹行是沪蓉西高速公路的显著特点之一,全线共有隧道37座,共计长达742421.2米.下图是正在修建的庙垭隧道的截面,截面是由一抛物线和一矩形构成,其行车道CD总宽度为8米,隧道为单行线2车道.
(1)建立恰当的平面直角坐标系,并求出隧道拱抛物线的解析式;
(2)在隧道拱的两侧距地面3米高处各安装一盏路灯,在(1)的平面直角坐标系中用坐标表示其中一盏路灯的位置;
(3)为了保证行车安全,要求行驶车辆顶部(设为平顶)与隧道拱在竖直方向上高度之差至少有0.5米.现有一辆汽车,装载货物后,其宽度为4米,车载货物的顶部与路面的距离为2.5米,该车能否通过这个隧道?请说明理由.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(24):2.6 何时获得最大利润(解析版) 题型:解答题

如图,在正方形ABCD中,AB=2,E是AD边上一点(点E与点A,D不重合).BE的垂直平分线交AB于M,交DC于N.
(1)设AE=x,四边形ADNM的面积为S,写出S关于x的函数关系式;
(2)当AE为何值时,四边形ADNM的面积最大?最大值是多少?

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(24):2.6 何时获得最大利润(解析版) 题型:解答题

甲车在弯路作刹车试验,收集到的数据如下表所示:
速度x
(千米/时)
510152025
刹车距离y(米)26
(1)请用上表中的各对数据(x,y)作为点的坐标,在图5所示的坐标系中画出甲车刹车距离y(米)与速度x(千米/时)的函数图象,并求函数的解析式;
(2)在一个限速为40千米/时的弯路上,甲、乙两车相向而行,同时刹车,但还是相撞了.事后测得甲、乙两车的刹车距离分别为12米和10.5米,又知乙车的刹车距离y(米)与速度x(千米/时)满足函数y=x,请你就两车的速度方面分析相撞的原因.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(24):2.6 何时获得最大利润(解析版) 题型:解答题

用大小相同的黑白两色小正方形瓷砖拼成如图所示的图形,观察图形并回答下列问题:
(1)当n=8时,图中白瓷砖有______块;?
(2)第m个图中,若大正方形图形所用的瓷砖的总块数用y来表示,试求y关于m的函数关系式;
(3)黑瓷砖与白瓷砖的块数有可能相等吗?为什么??

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(24):2.6 何时获得最大利润(解析版) 题型:解答题

某通讯器材公司销售一种市场需求较大的新型通讯产品.已知每件产品的进价为40元,每年销售该种产品的总开支(不含进价)总计120万元.在销售过程中发现,年销售量y(万件)与销售单价x(元)之间存在着如图所示的一次函数关系.
(1)求y关于x的函数关系式;
(2)试写出该公司销售该种产品的年获利z(万元)关于销售单价x(元)的函数关系式(年获利=年销售额一年销售产品总进价一年总开支).当销售单价x为何值时,年获利最大并求这个最大值;
(3)若公司希望该种产品一年的销售获利不低于40万元,借助(2)中函数的图象,请你帮助该公司确定销售单价的范围.在此情况下,要使产品销售量最大,你认为销售单价应定为多少元?

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(24):2.6 何时获得最大利润(解析版) 题型:解答题

一辆电瓶车在实验过程中,前10秒行驶的路程s(米)与时间t(秒)满足关系式s=at2,第10秒末开始匀速行驶,第24秒末开始刹车,第28秒末停在离终点20米处.下图是电瓶车行驶过程中第2秒记录一次的图象.
(1)求电瓶车从出发到刹车时的路程s(米)与时间t(秒)的函数关系式.
(2)如果第24秒末不刹车继续匀速行驶,那么出发多少秒后通过终点?
(3)如果10秒后仍按s=at2的运动方式行驶,那么出发多少秒后通过终点?
(参考数据:≈2.24,≈2.45,计算结果保留两个有效数字.)

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(24):2.6 何时获得最大利润(解析版) 题型:解答题

一列火车自A城驶往B城,沿途有n个车站(包括起点站A和终点站B),该列火车挂有一节邮政车厢,运行时需要在每个车站停靠,每停靠一站不仅要卸下已经通过的各车站发给该站的邮包一个,还要装上该站发往下面行程中每个车站的邮包一个.
例如,当列车停靠在第x个车站时,邮政车厢上需要卸下已经通过的(x-1)个车站发给该站的邮包共(x-1)个,还要装上下面行程中要停靠的(n-x)个车站的邮包共(n-x)个.
(1)根据题意,完成下表:
车站序号在第x个车站起程时邮政车厢邮包总数
1n-1
2(n-1)-1+(n-2)=2(n-2)
32(n-2)-2+(n-3)=3(n-3)
4
5
n
(2)根据上表,写出列车在第x车站启程时,邮政车厢上共有邮包的个数y(用x、n表示);
(3)当n=18时,列车在第几个车站启程时邮政车厢上邮包的个数最多?

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(24):2.6 何时获得最大利润(解析版) 题型:解答题

如图在梯形ABCD中,DC∥AB,∠A=90°,AD=6厘米,DC=4厘米,BC的坡度i=3:4,动点P从A出发以2厘米/秒的速度沿AB方向向点B运动,动点Q从点B出发以3厘米/秒的速度沿B?C?D方向向点D运动,两个动点同时出发,当其中一个动点到达终点时,另一个动点也随之停止.设动点运动的时间为t秒.
(1)求边BC的长;
(2)当t为何值时,PC与BQ相互平分;
(3)连接PQ,设△PBQ的面积为y,探求y与t的函数关系式,求t为何值时,y有最大值?最大值是多少?

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(24):2.6 何时获得最大利润(解析版) 题型:解答题

如图,在梯形ABCD中,AD∥BC,AD=2,BC=4,点M是AD的中点,△MBC是等边三角形.
(1)求证:梯形ABCD是等腰梯形;
(2)动点P、Q分别在线段BC和MC上运动,且∠MPQ=60°保持不变.设PC=x,MQ=y,求y与x的函数关系式;
(3)在(2)中:
①当动点P、Q运动到何处时,以点P、M和点A、B、C、D中的两个点为顶点的四边形是平行四边形?并指出符合条件的平行四边形的个数;
②当y取最小值时,判断△PQC的形状,并说明理由.

查看答案和解析>>

同步练习册答案