相关习题
 0  125634  125642  125648  125652  125658  125660  125664  125670  125672  125678  125684  125688  125690  125694  125700  125702  125708  125712  125714  125718  125720  125724  125726  125728  125729  125730  125732  125733  125734  125736  125738  125742  125744  125748  125750  125754  125760  125762  125768  125772  125774  125778  125784  125790  125792  125798  125802  125804  125810  125814  125820  125828  366461 

科目: 来源:第2章《二次函数》中考题集(23):2.6 何时获得最大利润(解析版) 题型:解答题

现有铝合金窗框料8米,准备用它做一个如图所示的长方形窗架,一般来说,当窗户总面积最大时,窗户的透光最好.那么,要使这个窗户透光最好,窗架的宽应为多少米此时窗户的总面积是多少平方米?

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(23):2.6 何时获得最大利润(解析版) 题型:解答题

如图是泰州某河上一座古拱桥的截面图,拱桥桥洞上沿是抛物线形状,抛物线两端点与水面的距离都是1m,拱桥的跨度为10m,桥洞与水面的最大距离是5m,桥洞两侧壁上各有一盏距离水面4m的景观灯.若把拱桥的截面图放在平面直角坐标系中(如图).

(1)求抛物线的解析式;(2)求两盏景观灯之间的水平距离.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(23):2.6 何时获得最大利润(解析版) 题型:解答题

如图,用长为18 m的篱笆(虚线部分),两面靠墙围成矩形的苗圃.
(1)设矩形的一边为x(m),面积为y(m2),求y关于x的函数关系式,并写出自变量x的取值范围;
(2)当x为何值时,所围苗圃的面积最大,最大面积是多少?

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(23):2.6 何时获得最大利润(解析版) 题型:解答题

如图,一个中学生推铅球,铅球在点A处出手,在点B处落地,它的运行路线是一条抛物线,在平面直角坐标系中,这条抛物线的解析式为:y=x2+x+
(1)请用配方法把y=-x2+x+化成y=a(x-h)2+k的形式.
(2)求出铅球在运行过程中到达最高点时离地面的距离和这个学生推铅球的成绩.(单位:米)

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(23):2.6 何时获得最大利润(解析版) 题型:解答题

农民张大伯为了致富奔小康,大力发展家庭养殖业.他准备用40m长的木栏围一个矩形的羊圈,为了节约材料同时要使矩形的面积最大,他利用了自家房屋一面长25m的墙,设计了如图一个矩形的羊圈.
(1)请你求出张大伯矩形羊圈的面积;
(2)请你判断他的设计方案是否合理?如果合理,直接答合理;如果不合理又该如何设计并说明理由.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(23):2.6 何时获得最大利润(解析版) 题型:解答题

如图,在矩形ABCD中,AB=6米,BC=8米,动点P以2米/秒的速度从点A出发,沿AC向点C移动,同时动点Q以1米/秒的速度从点C出发,沿CB向点B移动,设P、Q两点移动t秒(0<t<5)后,四边形ABQP的面积为S米2
(1)求面积S与时间t的关系式;
(2)在P、Q两点移动的过程中,四边形ABQP与△CPQ的面积能否相等?若能,求出此时点P的位置;若不能,请说明理由.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(23):2.6 何时获得最大利润(解析版) 题型:解答题

某校八年级(1)班共有学生50人,据统计原来每人每年用于购买饮料的平均支出是a元.经测算和市场调查,若该班学生集体改饮某品牌的桶装纯净水,则年总费用由两部分组成,一部分是购买纯净水的费用,另一部分是其它费用780元,其中,纯净水的销售价x(元/桶)与年购买总量y(桶)之间满足如图所示关系.
(1)求y与x的函数关系式;
(2)若该班每年需要纯净水380桶,且a为120时,请你根据提供的信息分析一下:该班学生集体改饮桶装纯净水与个人买饮料,哪一种花钱更少?
(3)当a至少为多少时,该班学生集体改饮桶装纯净水一定合算从计算结果看,你有何感想?(不超过30字)

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(23):2.6 何时获得最大利润(解析版) 题型:解答题

某公司2005年1-3月的月利润y(万元)与月份x之间的关系如图所示.图中的折线可近似看作是抛物线的一部分.
(1)根据图象提供的信息,求出过A、B、C三点的二次函数关系式;
(2)公司开展技术革新活动,定下目标:今年6月份的利润仍以图中抛物线的上升趋势上升.6月份公司预计将达到多少万元?
(3)如果公司1月份的利润率为13%,以后逐月增加1个百分点.已知6月上旬平均每日实际销售收入为3.6万元,照此推算6月份公司的利润是否会超过(2)中所确定的目标?
(成本总价=利润利润率,销售收入=成本总价+利润)

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(23):2.6 何时获得最大利润(解析版) 题型:解答题

有一个抛物线形的拱形隧道,隧道的最大高度为6m,跨度为8m,把它放在如图所示的平面直角坐标系中.
(1)求这条抛物线所对应的函数关系式;
(2)若要在隧道壁上点P(如图)安装一盏照明灯,灯离地面高4.5m.求灯与点B的距离.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(23):2.6 何时获得最大利润(解析版) 题型:解答题

东海体育用品商场为了推销某一运动服,先做了市场调查,得到数据如下表:
卖出价格x(元/件)50515253
销售量p(件)500490480470
(1)以x作为点的横坐标,p作为纵坐标,把表中的数据,在图中的直角坐标系中描出相应的点,观察连接各点所得的图形,判断p与x的函数关系式;
(2)如果这种运动服的买入价为每件40元,试求销售利润y(元)与卖出价格x(元/件)的函数关系式(销售利润=销售收入-买入支出);
(3)在(2)的条件下,当卖出价为多少时,能获得最大利润?

查看答案和解析>>

同步练习册答案