相关习题
 0  125641  125649  125655  125659  125665  125667  125671  125677  125679  125685  125691  125695  125697  125701  125707  125709  125715  125719  125721  125725  125727  125731  125733  125735  125736  125737  125739  125740  125741  125743  125745  125749  125751  125755  125757  125761  125767  125769  125775  125779  125781  125785  125791  125797  125799  125805  125809  125811  125817  125821  125827  125835  366461 

科目: 来源:第2章《二次函数》中考题集(20):2.6 何时获得最大利润(解析版) 题型:解答题

某服装公司试销一种成本为每件50元的T恤衫,规定试销时的销售单价不低于成本价,又不高于每件70元,试销中销售量y(件)与销售单价x(元)的关系可以近似的看作一次函数(如图).
(1)求y与x之间的函数关系式;
(2)设公司获得的总利润(总利润=总销售额-总成本)为P元,求P与x之间的函数关系式,并写出自变量x的取值范围;根据题意判断:当x取何值时,P的值最大,最大值是多少?

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(20):2.6 何时获得最大利润(解析版) 题型:解答题

枇杷是莆田名果之一,某果园有100棵枇杷树.每棵平均产量为40千克,现准备多种一些枇杷树以提高产量,但是如果多种树,那么树与树之间的距离和每一棵数接受的阳光就会减少,根据实践经验,每多种一棵树,投产后果园中所有的枇杷树平均每棵就会减少产量0.25千克,问:增种多少棵枇杷树,投产后可以使果园枇杷的总产量最多?最多总产量是多少千克?

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(20):2.6 何时获得最大利润(解析版) 题型:解答题

随着绿城南宁近几年城市建设的快速发展,对花木的需求量逐年提高.某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润y1与投资量x成正比例关系,如图①所示;种植花卉的利润y2与投资量x成二次函数关系,如图②所示(注:利润与投资量的单位:万元)
(1)分别求出利润y1与y2关于投资量x的函数关系式;
(2)如果这位专业户以8万元资金投入种植花卉和树木,他至少获得多少利润,他能获取的最大利润是多少?

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(20):2.6 何时获得最大利润(解析版) 题型:解答题

青年企业家刘敏准备在北川禹里乡投资修建一个有30个房间供旅客住宿的旅游度假村,并将其全部利润用于灾后重建.据测算,若每个房间的定价为60元/天,房间将会住满;若每个房间的定价每增加5元∕天时,就会有一个房间空闲.度假村对旅客住宿的房间将支出各种费用20元/天•间(没住宿的不支出).问房价每天定为多少时,度假村的利润最大?

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(20):2.6 何时获得最大利润(解析版) 题型:解答题

我市某工艺厂为配合北京奥运,设计了一款成本为20元∕件的工艺品投放市场进行试销.经过调查,得到如下数据:
销售单价x(元/件)30405060
每天销售量y(件)500400300200
(1)把上表中x、y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y与x的函数关系,并求出函数关系式;
(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价-成本总价)
(3)当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(20):2.6 何时获得最大利润(解析版) 题型:解答题

如图,把一张长10cm,宽8cm的矩形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子(纸板的厚度忽略不计).
(1)要使长方体盒子的底面积为48cm2,那么剪去的正方形的边长为多少;
(2)你感到折合而成的长方体盒子的侧面积会不会有更大的情况?如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由;
(3)如果把矩形硬纸板的四周分别剪去2个同样大小的正方形和2个同样形状、同样大小的矩形,然后折合成一个有盖的长方体盒子,是否有侧面积最大的情况?如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(20):2.6 何时获得最大利润(解析版) 题型:解答题

我州有一种可食用的野生菌,上市时,外商李经理按市场价格30元/千克收购了这种野生菌1000千克存放入冷库中,据预测,该野生菌的市场价格将以每天每千克上涨1元;但冷冻存放这批野生菌时每天需要支出各种费用合计310元,而且这类野生菌在冷库中最多保存160天,同时,平均每天有3千克的野生菌损坏不能出售.
(1)设x天后每千克该野生菌的市场价格为y元,试写出y与x之间的函数关系式.
(2)若存放x天后,将这批野生菌一次性出售,设这批野生菌的销售总额为P元,试写出P与x之间的函数关系式.
(3)李经理将这批野生茵存放多少天后出售可获得最大利润W元?
(利润=销售总额-收购成本-各种费用)

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(20):2.6 何时获得最大利润(解析版) 题型:解答题

一家电脑公司推出一款新型电脑,投放市场以来的利润情况可以看做是抛物线的一部分,请结合下面的图象解答以下问题:
(1)求该抛物线对应的二次函数的解析式;
(2)该公司在经营此款电脑过程中,第几个月的利润最大,最大利润是多少;
(3)若照此经营下去,请你结合所学的知识,对公司在此款电脑的经营状况(是否亏损何时亏损)作出预测.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(20):2.6 何时获得最大利润(解析版) 题型:解答题

一座拱桥的轮廓是抛物线型(如图1),拱高6m,跨度20m,相邻两支柱间的距离均为5m.
(1)将抛物线放在所给的直角坐标系中(如图2),求抛物线的解析式;
(2)求支柱EF的长度;
(3)拱桥下地平面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道能否并排行驶宽2m、高3m的三辆汽车(汽车间的间隔忽略不计)?请说明你的理由.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(20):2.6 何时获得最大利润(解析版) 题型:解答题

某人定制了一批地砖,每块地砖(如图(1)所示)是边长为0.4米的正方形ABCD,点E、F分别在边BC和CD上,△CFE、△ABE和四边形AEFD均由单一材料制成,制成△CFE、△ABE和四边形AEFD的三种材料的每平方米价格依次为30元、20元、10元,若将此种地砖按图(2)所示的形式铺设,且能使中间的阴影部分组成四边形EFGH.
(1)判断图(2)中四边形EFGH是何形状,并说明理由;
(2)E、F在什么位置时,定制这批地砖所需的材料费用最省?

查看答案和解析>>

同步练习册答案