相关习题
 0  125647  125655  125661  125665  125671  125673  125677  125683  125685  125691  125697  125701  125703  125707  125713  125715  125721  125725  125727  125731  125733  125737  125739  125741  125742  125743  125745  125746  125747  125749  125751  125755  125757  125761  125763  125767  125773  125775  125781  125785  125787  125791  125797  125803  125805  125811  125815  125817  125823  125827  125833  125841  366461 

科目: 来源:第2章《二次函数》中考题集(17):2.6 何时获得最大利润(解析版) 题型:解答题

如图所示,P是△ABC边AC上的动点,以P为顶点作矩形PDEF,顶点D,E在边BC上,顶点F在边AB上;△ABC的底边BC及BC上的高的长分别为a,h,且是关于x的一元二次方程mx2+nx+k=0的两个实数根,设过D,E,F三点的⊙O的面积为S⊙O,矩形PDEF的面积为S矩形PDEF
(1)求证:以a+h为边长的正方形面积与以a、h为边长的矩形面积之比不小于4;
(2)求的最小值;
(3)当的值最小时,过点A作BC的平行线交直线BP与Q,这时线段AQ的长与m,n,k的取值是否有关?请说明理由.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(17):2.6 何时获得最大利润(解析版) 题型:解答题

在△ABC中,∠C=90°,AC=3,BC=4,CD是斜边AB上的高,点E在斜边AB上,过点E作直线与△ABC的直角边相交于点F,设AE=x,△AEF的面积为y.
(1)求线段AD的长;
(2)若EF⊥AB,当点E在线段AB上移动时,
①求y与x的函数关系式(写出自变量x的取值范围)
②当x取何值时,y有最大值?并求其最大值;
(3)若F在直角边BC上(点F与B、C两点均不重合),点E在斜边AB上移动,试问:是否存在直线EF将△ABC的周长和面积同时平分?若存在直线EF,求出x的值;若不存在直线EF,请说明理由.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(17):2.6 何时获得最大利润(解析版) 题型:解答题

如图,在直角梯形ABCD中,AB∥DC,∠D=90°,AC⊥BC,AB=10cm,BC=6cm,F点以2cm/秒的速度在线段AB上由A向B匀速运动,E点同时以1cm/秒的速度在线段BC上由B向C匀速运动,设运动时间为t秒(0<t<5).
(1)求证:△ACD∽△BAC;
(2)求DC的长;
(3)设四边形AFEC的面积为y,求y关于t的函数关系式,并求出y的最小值.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(17):2.6 何时获得最大利润(解析版) 题型:解答题

如图,Rt△ABC中,∠C=90°,BC=6,AC=8.点P,Q都是斜边AB上的动点,点P从B向A运动(不与点B重合),点Q从A向B运动,BP=AQ.点D,E分别是点A,B以Q,P为对称中心的对称点,HQ⊥AB于Q,交AC于点H.当点E到达顶点A时,P,Q同时停止运动.设BP的长为x,△HDE的面积为y.
(1)求证:△DHQ∽△ABC;
(2)求y关于x的函数解析式并求y的最大值;
(3)当x为何值时,△HDE为等腰三角形?

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(17):2.6 何时获得最大利润(解析版) 题型:解答题

自选题:
如图,已知在矩形ABCD中,AB=2,BC=3,P是线段AD边上的任意一点(不含端点A、D),连接PC,过点P作PE⊥PC交AB于E.
(1)在线段AD上是否存在不同于P的点Q,使得QC⊥QE?若存在,求线段AP与AQ之间的数量关系;若不存在,请说明理由;
(2)当点P在AD上运动时,对应的点E也随之在AB上运动,求BE的取值范围.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(17):2.6 何时获得最大利润(解析版) 题型:解答题

已知:把Rt△ABC和Rt△DEF按如图(1)摆放(点C与点E重合),点B、C(E)、F在同一条直线上.∠ACB=∠EDF=90°,∠DEF=45°,AC=8cm,BC=6cm,EF=9cm.
如图(2),△DEF从图(1)的位置出发,以1cm/s的速度沿CB向△ABC匀速移动,在△DEF移动的同时,点P从△ABC的顶点B出发,以2cm/s的速度沿BA向点A匀速移动.当△DEF的顶点D移动到AC边上时,△DEF停止移动,点P也随之停止移动、DE与AC相交于点Q,连接PQ,设移动时间为t(s)(0<t<4.5)解答下列问题:
(1)当t为何值时,点A在线段PQ的垂直平分线上?
(2)连接PE,设四边形APEC的面积为y(cm2),求y与t之间的函数关系式;是否存在某一时刻t,使面积y最小?若存在,求出y的最小值;若不存在,说明理由;
(3)是否存在某一时刻t,使P、Q、F三点在同一条直线上?若存在,求出此时t的值;若不存在,说明理由.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(17):2.6 何时获得最大利润(解析版) 题型:解答题

如图,将OA=6,AB=4的矩形OABC放置在平面直角坐标系中,动点M、N以每秒1个单位的速度分别从点A、C同时出发,其中点M沿AO向终点O运动,点N沿CB向终点B运动,当两个动点运动了t秒时,过点N作NP⊥BC,交OB于点P,连接MP.
(1)点B的坐标为______;用含t的式子表示点P的坐标为______;
(2)记△OMP的面积为S,求S与t的函数关系式(0<t<6);并求t为何值时,S有最大值?
(3)试探究:当S有最大值时,在y轴上是否存在点T,使直线MT把△ONC分割成三角形和四边形两部分,且三角形的面积是△ONC面积的?若存在,求出点T的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(17):2.6 何时获得最大利润(解析版) 题型:解答题

如图,在梯形ABCD中,AD∥BC,∠B=90°,BC=6,AD=3,∠DCB=30°.点E、F同时从B点出发,沿射线BC向右匀速移动.已知F点移动速度是E点移动速度的2倍,以EF为一边在CB的上方作等边△EFG.设E点移动距离为x(x>0).
(1)△EFG的边长是______(用含有x的代数式表示),当x=2时,点G的位置在______;
(2)若△EFG与梯形ABCD重叠部分面积是y,求:
①当0<x≤2时,y与x之间的函数关系式;
②当2<x≤6时,y与x之间的函数关系式;
(3)探求(2)中得到的函数y在x取含何值时,存在最大值,并求出最大值.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(17):2.6 何时获得最大利润(解析版) 题型:解答题

如图,在矩形ABCD中,AB=m(m是大于0的常数),BC=8,E为线段BC上的动点(不与B、C重合).连接DE,作EF⊥DE,EF与射线BA交于点F,设CE=x,BF=y.
(1)求y关于x的函数关系式;
(2)若m=8,求x为何值时,y的值最大,最大值是多少?
(3)若y=,要使△DEF为等腰三角形,m的值应为多少?

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(17):2.6 何时获得最大利润(解析版) 题型:解答题

如图,在梯形ABCD中,AB∥DC,AB=2,DC=10,AD=BC=5,点M、N分别在AD、BC上运动,并保持MN∥AB,ME⊥DC,NF⊥DC,垂足分别为E、F.
(1)求梯形ABCD的面积;
(2)探究一:四边形MNFE的面积有无最大值?若有,请求出这个最大值;若无,请说明理由;
(3)探究二:四边形MNFE能否为正方形?若能,请求出正方形的面积;若不能,请说明理由.

查看答案和解析>>

同步练习册答案