相关习题
 0  125717  125725  125731  125735  125741  125743  125747  125753  125755  125761  125767  125771  125773  125777  125783  125785  125791  125795  125797  125801  125803  125807  125809  125811  125812  125813  125815  125816  125817  125819  125821  125825  125827  125831  125833  125837  125843  125845  125851  125855  125857  125861  125867  125873  125875  125881  125885  125887  125893  125897  125903  125911  366461 

科目: 来源:第1章《直角三角形的边角关系》常考题集(11):1.4 船有触角的危险吗(解析版) 题型:解答题

如图,在梯形ABCD中,AD∥BC,AD=3,DC=5,AB=4,∠B=45°.动点M从B点出发沿线段BC以每秒2个单位长度的速度向终点C运动;动点N同时从C点出发沿线段CD以每秒1个单位长度的速度向终点D运动.设运动的时间为t秒.
(1)求BC的长;
(2)当MN∥AB时,求t的值;
(3)试探究:t为何值时,△MNC为等腰三角形.

查看答案和解析>>

科目: 来源:第1章《直角三角形的边角关系》常考题集(11):1.4 船有触角的危险吗(解析版) 题型:解答题

如图,在直角梯形ABCD中,AD∥BC,∠C=90°,BC=16,DC=12,AD=21.动点P从点D出发,沿射线DA的方向,在射线DA上以每秒2两个单位长的速度运动,动点Q从点C出发,在线段CB上以每秒1个单位长的速度向点B运动,点P,Q分别从点D,C同时出发,当点Q运动到点B时,点P随之停止运动.设运动的时间为t(秒).
(1)设△BPQ的面积为S,求S与t之间的函数关系式;
(2)当t为何值时,以B,P,Q三点为顶点的三角形是等腰三角形;
(3)当线段PQ与线段AB相交于点O,且2AO=OB时,求∠BQP的正切值;
(4)是否存在时刻t,使得PQ⊥BD?若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:第1章《直角三角形的边角关系》常考题集(11):1.4 船有触角的危险吗(解析版) 题型:解答题

已知∠ABC=90°,AB=2,BC=3,AD∥BC,P为线段BD上的动点,点Q在射线AB上,且满足(如图1所示).
(1)当AD=2,且点Q与点B重合时(如图2所示),求线段PC的长;
(2)在图1中,连接AP.当AD=,且点Q在线段AB上时,设点B、Q之间的距离为x,,其中S△APQ表示△APQ的面积,S△PBC表示△PBC的面积,求y关于x的函数解析式,并写出函数定义域;
(3)当AD<AB,且点Q在线段AB的延长线上时(如图3所示),求∠QPC的大小.

查看答案和解析>>

科目: 来源:第1章《直角三角形的边角关系》常考题集(11):1.4 船有触角的危险吗(解析版) 题型:解答题

在△ABC中,AB=BC=2,∠ABC=120°,将△ABC绕点B顺时针旋转角α(0°<α<90°)得△A1BC1,A1B交AC于点E,A1C1分别交AC、BC于D、F两点.

(1)如图1,观察并猜想,在旋转过程中,线段EA1与FC有怎样的数量关系?并证明你的结论;
(2)如图2,当α=30°时,试判断四边形BC1DA的形状,并说明理由;
(3)在(2)的情况下,求ED的长.

查看答案和解析>>

科目: 来源:第1章《直角三角形的边角关系》常考题集(11):1.4 船有触角的危险吗(解析版) 题型:解答题

如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,请按要求完成下列各题:
(1)用签字笔画AD∥BC(D为格点),连接CD;
(2)线段CD的长为______;
(3)请你在△ACD的三个内角中任选一个锐角,若你所选的锐角是______,则它所对应的正弦函数值是______;
(4)若E为BC中点,则tan∠CAE的值是______.

查看答案和解析>>

科目: 来源:第1章《直角三角形的边角关系》常考题集(11):1.4 船有触角的危险吗(解析版) 题型:解答题

如图,在梯形ABCD中,AD∥BC,AC⊥AB,AD=CD,cosB=,BC=26.
求:(1)cos∠DAC的值;
(2)线段AD的长.

查看答案和解析>>

科目: 来源:第1章《直角三角形的边角关系》常考题集(11):1.4 船有触角的危险吗(解析版) 题型:解答题

附加题:由直角三角形边角关系,可将三角形面积公式变形,得S△ABC=bc•sin∠A①,即三角形的面积等于两边之长与夹角正弦之积的一半.
如图,在△ABC中,CD⊥AB于D,∠ACD=α,∠DCB=β∵S△ABC=S△ADC+S△BDC,由公式①,得AC•BC•sin(α+β)=AC•CD•sinα+BC•CD•sinβ,即AC•BC•sin(α+β)=AC•CD•sinα+BC•CD•sinβ②
你能利用直角三角形边角关系,消去②中的AC、BC、CD吗?不能,说明理由;能,写出解决过程.

查看答案和解析>>

科目: 来源:第1章《直角三角形的边角关系》常考题集(11):1.4 船有触角的危险吗(解析版) 题型:解答题

如图,在△ABC中,AD是BC上的高,tanB=cos∠DAC.
(1)求证:AC=BD;
(2)若sin∠C=,BC=12,求AD的长.

查看答案和解析>>

科目: 来源:第1章《直角三角形的边角关系》常考题集(11):1.4 船有触角的危险吗(解析版) 题型:解答题

如图所示,在直角坐标平面内,O为原点,点A的坐标为(10,0),点B在第一象限内,BO=5,sin∠BOA=
求:(1)点B的坐标;(2)cos∠BAO的值.

查看答案和解析>>

科目: 来源:第1章《直角三角形的边角关系》常考题集(11):1.4 船有触角的危险吗(解析版) 题型:解答题

如图,在梯形ABCD中,AB∥CD,∠BCD=90°,且AB=1,BC=2,tan∠ADC=2.
(1)求证:DC=BC;
(2)E是梯形内一点,F是梯形外一点,且∠EDC=∠FBC,DE=BF,试判断△ECF的形状,并证明你的结论;
(3)在(2)的条件下,当BE:CE=1:2,∠BEC=135°时,求sin∠BFE的值.

查看答案和解析>>

同步练习册答案