相关习题
 0  125718  125726  125732  125736  125742  125744  125748  125754  125756  125762  125768  125772  125774  125778  125784  125786  125792  125796  125798  125802  125804  125808  125810  125812  125813  125814  125816  125817  125818  125820  125822  125826  125828  125832  125834  125838  125844  125846  125852  125856  125858  125862  125868  125874  125876  125882  125886  125888  125894  125898  125904  125912  366461 

科目: 来源:第1章《直角三角形的边角关系》常考题集(10):1.4 船有触角的危险吗(解析版) 题型:解答题

如图,菱形ABCD的边长为2,BD=2,E、F分别是边AD,CD上的两个动点,且满足AE+CF=2.
(1)求证:△BDE≌△BCF;
(2)判断△BEF的形状,并说明理由;
(3)设△BEF的面积为S,求S的取值范围.

查看答案和解析>>

科目: 来源:第1章《直角三角形的边角关系》常考题集(10):1.4 船有触角的危险吗(解析版) 题型:解答题

已知:如图,P是正方形ABCD内一点,在正方形ABCD外有一点E,满足∠ABE=∠CBP,BE=BP.
(1)求证:△CPB≌△AEB;
(2)求证:PB⊥BE;
(3)若PA:PB=1:2,∠APB=135°,求cos∠PAE的值.

查看答案和解析>>

科目: 来源:第1章《直角三角形的边角关系》常考题集(10):1.4 船有触角的危险吗(解析版) 题型:解答题

如图,在梯形ABCD中,AD∥BC,∠B=90°,∠C=45°,AD=1,BC=4,E为AB中点,EF∥DC交BC于点F,求EF的长.

查看答案和解析>>

科目: 来源:第1章《直角三角形的边角关系》常考题集(10):1.4 船有触角的危险吗(解析版) 题型:解答题

如图,在梯形ABCD中,AD∥BC,AB=DC=AD,∠C=60°,AE⊥BD于E,AE=1.求梯形ABCD的高.

查看答案和解析>>

科目: 来源:第1章《直角三角形的边角关系》常考题集(10):1.4 船有触角的危险吗(解析版) 题型:解答题

如图,等腰梯形ABCD中,AD∥BC,∠DBC=45°,翻折梯形ABCD,使点B与点D重合,折痕分别交边AB、BC于点F、E,若AD=2,BC=8.
(1)求BE的长;
(2)求∠CDE的正切值.

查看答案和解析>>

科目: 来源:第1章《直角三角形的边角关系》常考题集(10):1.4 船有触角的危险吗(解析版) 题型:解答题

如图,在直角坐标系中,已知点M的坐标为(1,0),将线段OM绕原点O沿逆时针方向旋转45°,再将其延长到M1,使得M1M⊥OM,得到线段OM1;又将线段OM1绕原点O沿逆时针方向旋转45°,再将其延长到M2,使得M2M1⊥OM1,得到线段OM2,如此下去,得到线段OM3,OM4,…,OMn
(1)写出点M5的坐标;
(2)求△M5OM6的周长;
(3)我们规定:把点Mn(xn,yn)(n=0,1,2,3…)的横坐标xn,纵坐标yn都取绝对值后得到的新坐标(|xn|,|yn|)称之为点Mn的“绝对坐标”.根据图中点Mn的分布规律,请你猜想点Mn的“绝对坐标”,并写出来.

查看答案和解析>>

科目: 来源:第1章《直角三角形的边角关系》常考题集(10):1.4 船有触角的危险吗(解析版) 题型:解答题

如图,把正方形ACFG与Rt△ACB按如图(甲)所示重叠在一起,其中AC=2,∠BAC=60°,若把Rt△ACB绕直角顶点C按顺时针方向旋转,使斜边AB恰好经过正方形ACFG的顶点F,得△A′B′C′,A B分别与A′C,A′B′相交于D、E,如图(乙)所示.
①△ACB至少旋转多少度才能得到△A′B′C′?说明理由;
②求△ACB与△A′B′C′的重叠部分(即四边形CDEF)的面积(若取近似值,则精确到0.1)?

查看答案和解析>>

科目: 来源:第1章《直角三角形的边角关系》常考题集(11):1.4 船有触角的危险吗(解析版) 题型:解答题

如图,已知△ABC是边长为6cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC匀速运动,其中点P运动的速度是1cm/s,点Q运动的速度是2cm/s,当点Q到达点C时,P、Q两点都停止运动,设运动时间为t(s),解答下列问题:
(1)当t=2时,判断△BPQ的形状,并说明理由;
(2)设△BPQ的面积为S(cm2),求S与t的函数关系式;
(3)作QR∥BA交AC于点R,连接PR,当t为何值时,△APR∽△PRQ.

查看答案和解析>>

科目: 来源:第1章《直角三角形的边角关系》常考题集(11):1.4 船有触角的危险吗(解析版) 题型:解答题

将两块大小一样含30°角的直角三角板,叠放在一起,使得它们的斜边AB重合,直角边不重合,已知AB=8,BC=AD=4,AC与BD相交于点E,连接CD.

(1)填空:如图1,AC=______

查看答案和解析>>

科目: 来源:第1章《直角三角形的边角关系》常考题集(11):1.4 船有触角的危险吗(解析版) 题型:解答题

如图,方格纸上的每个小方格都是边长为1的正方形,我们把格点间连线为边的三角形称为“格点三角形”,图中的△ABC就是一个格点三角形.
(1)在△ABC中,BC=______,tanB=______;
(2)请在方格中画出一个格点三角形DEF,使△DEF∽△ABC,并且△DEF与△ABC的相似比为2.

查看答案和解析>>

同步练习册答案