相关习题
 0  125953  125961  125967  125971  125977  125979  125983  125989  125991  125997  126003  126007  126009  126013  126019  126021  126027  126031  126033  126037  126039  126043  126045  126047  126048  126049  126051  126052  126053  126055  126057  126061  126063  126067  126069  126073  126079  126081  126087  126091  126093  126097  126103  126109  126111  126117  126121  126123  126129  126133  126139  126147  366461 

科目: 来源:第25章《图形的变换》中考题集(16):25.2 旋转变换(解析版) 题型:解答题

已知Rt△ABC中,AC=BC,∠C=90°,D为AB边的中点,∠EDF=90°,∠EDF绕D点旋转,它的两边分别交AC、CB(或它们的延长线)于E、F.
(1)当∠EDF绕D点旋转到DE⊥AC于E时(如图1),易证S△DEF+S△CEF=S△ABC
(2)当∠EDF绕D点旋转到DE和AC不垂直时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,S△DEF、S△CEF、S△ABC又有怎样的数量关系?请写出你的猜想,不需证明.

查看答案和解析>>

科目: 来源:第25章《图形的变换》中考题集(16):25.2 旋转变换(解析版) 题型:解答题

图中是一副三角板,45°的三角板Rt△DEF的直角顶点D恰好在30°的三角板Rt△ABC斜边AB的中点处,∠A=30°,∠E=45°,∠EDF=∠ACB=90°,DE交AC于点G,GM⊥AB于M.

(1)如图①,当DF经过点C时,作CN⊥AB于N,求证:AM=DN;
(2)如图②,当DF∥AC时,DF交BC于H,作HN⊥AB于N,(1)的结论仍然成立,请你说明理由.

查看答案和解析>>

科目: 来源:第25章《图形的变换》中考题集(16):25.2 旋转变换(解析版) 题型:解答题

如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2.点O是AC的中点,过点O的直线l从与AC重合的位置开始,绕点O作逆时针旋转,交AB边于点D,过点C作CE∥AB交直线l于点E,设直线l的旋转角为α.
(1)①当α=______度时,四边形EDBC是等腰梯形,此时AD的长为______;
②当α=______度时,四边形EDBC是直角梯形,此时AD的长为______;
(2)当α=90°时,判断四边形EDBC是否为菱形,并说明理由.

查看答案和解析>>

科目: 来源:第25章《图形的变换》中考题集(16):25.2 旋转变换(解析版) 题型:解答题

将一副直角三角板放置像图1那样,等腰直角三角板ACB的直角顶点A在直角三角板EDF的直角边DE上,点C、D、B、F在同一直线上,点D、B是CF的三等分点,CF=6,∠F=30°.
(1)三角板ACB固定不动,将三角板EDF绕点D逆时针旋转至EF∥CB(如图2),试求DF旋转的度数;点A在EF上吗?为什么?
(2)在图2的位置,将三角板EDF绕点D继续逆时针旋转15°.请问此时AC与DF有何位置关系?为什么?

查看答案和解析>>

科目: 来源:第25章《图形的变换》中考题集(16):25.2 旋转变换(解析版) 题型:解答题

已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.
(1)求证:EG=CG;
(2)将图①中△BEF绕B点逆时针旋转45°,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;
(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论(均不要求证明).

查看答案和解析>>

科目: 来源:第25章《图形的变换》中考题集(16):25.2 旋转变换(解析版) 题型:解答题

(1)如图1,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连接AC和BD,相交于点E,连接BC.求∠AEB的大小;
(2)如图2,△OAB固定不动,保持△OCD的形状和大小不变,将△OCD绕点O旋转(△OAB和△OCD不能重叠),求∠AEB的大小.

查看答案和解析>>

科目: 来源:第25章《图形的变换》中考题集(16):25.2 旋转变换(解析版) 题型:解答题

聪聪用两块含45°角的直角三角尺△ABC、△MNK进行一次探究活动:他将△MNK的直角顶点M放在△ABC的斜边AB的中点处,让MK经过C点(如图甲),若BC=MK=4.
(1)此时两三角尺的重叠部分(△ACM)面积为______;
(2)再将图甲中的△MNK绕顶点M逆时针旋转45°得到图乙,此时两三角尺的重叠部分(四边形MDCG)面积为______;
(3)据此猜想:在MK与BC相交的前提下,将△MNK绕点M旋转到任一位置(如图丙)时两三角尺的重叠部分面积为______,请说出理由.

查看答案和解析>>

科目: 来源:第25章《图形的变换》中考题集(16):25.2 旋转变换(解析版) 题型:解答题

把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6cm,DC=7cm把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图乙).这时AB与CD1相交于点O,与D1E1相交于点F.
(1)求∠OFE1的度数;
(2)求线段AD1的长;
(3)若把三角形D1CE1绕着点C顺时针再旋转30°得△D2CE2,这时点B在△D2CE2的内部,外部,还是边上?证明你的判断.

查看答案和解析>>

科目: 来源:第25章《图形的变换》中考题集(16):25.2 旋转变换(解析版) 题型:解答题

两个全等的直角三角形ABC和DEF重叠在一起,其中∠A=60°,AC=1.固定△ABC不动,将△DEF进行如下操作:
(1)如图,△DEF沿线段AB向右平移(即D点在线段AB内移动),连接DC、CF、FB,四边形CDBF的形状在不断的变化,但它的面积不变化,请求出其面积.

(2)如图,当D点移到AB的中点时,请你猜想四边形CDBF的形状,并说明理由.

(3)如图,△DEF的D点固定在AB的中点,然后绕D点按顺时针方向旋转△DEF,使DF落在AB边上,此时F点恰好与B点重合,连接AE,请你求出sinα的值.

查看答案和解析>>

科目: 来源:第25章《图形的变换》中考题集(16):25.2 旋转变换(解析版) 题型:解答题

如图,正方形ABCD的边长为1,点M、N分别在BC、CD上,使得△CMN的周长为2,将△AND绕点A顺时针旋转90°得△ABL,求证:△ANM≌△ALM.

查看答案和解析>>

同步练习册答案