相关习题
 0  125959  125967  125973  125977  125983  125985  125989  125995  125997  126003  126009  126013  126015  126019  126025  126027  126033  126037  126039  126043  126045  126049  126051  126053  126054  126055  126057  126058  126059  126061  126063  126067  126069  126073  126075  126079  126085  126087  126093  126097  126099  126103  126109  126115  126117  126123  126127  126129  126135  126139  126145  126153  366461 

科目: 来源:第25章《图形的变换》中考题集(14):25.2 旋转变换(解析版) 题型:解答题

如图1,以矩形OABC的两边OA和OC所在的直线为x轴、y轴建立平面直角坐标系,A点的坐标为(3,0),C点的坐标为(0,4).将矩形OABC绕O点逆时针旋转,使B点落在y轴的正半轴上,旋转后的矩形为OA1B1C1,BC,A1B1相交于点M.
(1)求点B1的坐标与线段B1C的长;
(2)将图1中的矩形OA1B1C1沿y轴向上平移,如图2,矩形PA2B2C2是平移过程中的某一位置,BC,A2B2相交于点M1,点P运动到C点停止.设点P运动的距离为x,矩形PA2B2C2与原矩形OABC重叠部分的面积为y,求y关于x的函数关系式,并写出x的取值范围;
(3)如图3,当点P运动到点C时,平移后的矩形为PA3B3C3.请你思考如何通过图形变换使矩形PA3B3C3与原矩形OABC重合,请简述你的做法.

查看答案和解析>>

科目: 来源:第25章《图形的变换》中考题集(14):25.2 旋转变换(解析版) 题型:解答题

在矩形ABCD中,AD=2AB,E是AD的中点,一块三角板的直角顶点与点E重合,将三角板绕点E按顺时针方向旋转,当三角板的两直角边与AB、BC分别相交于点M,N时,观察或测量BM与CN的长度,你能得到什么结论?并证明你的结论.


查看答案和解析>>

科目: 来源:第25章《图形的变换》中考题集(14):25.2 旋转变换(解析版) 题型:解答题

如图,直角梯形ABCD中,AD∥BC,∠BCD=90°,且CD=2AD,tan∠ABC=2,过点D作DE∥AB,交∠BCD的平分线于点E,连接BE.
(1)求证:BC=CD;
(2)将△BCE绕点C,顺时针旋转90°得到△DCG,连接EG.求证:CD垂直平分EG;
(3)延长BE交CD于点P.求证:P是CD的中点.

查看答案和解析>>

科目: 来源:第25章《图形的变换》中考题集(14):25.2 旋转变换(解析版) 题型:解答题

在图1至图3中,点B是线段AC的中点,点D是线段CE的中点.四边形BCGF和CDHN都是正方形.AE的中点是M.
(1)如图1,点E在AC的延长线上,点N与点G重合时,点M与点C重合,求证:FM=MH,FM⊥MH;
(2)将图1中的CE绕点C顺时针旋转一个锐角,得到图2,求证:△FMH是等腰直角三角形;
(3)将图2中的CE缩短到图3的情况,△FMH还是等腰直角三角形吗?(不必说明理由)

查看答案和解析>>

科目: 来源:第25章《图形的变换》中考题集(14):25.2 旋转变换(解析版) 题型:解答题

探究问题:
(1)阅读理解:
①如图(A),在已知△ABC所在平面上存在一点P,使它到三角形顶点的距离之和最小,则称点P为△ABC的费马点,此时PA+PB+PC的值为△ABC的费马距离;
②如图(B),若四边形ABCD的四个顶点在同一圆上,则有AB•CD+BC•DA=AC•BD.此为托勒密定理;

(2)知识迁移:
①请你利用托勒密定理,解决如下问题:
如图(C),已知点P为等边△ABC外接圆的上任意一点.求证:PB+PC=PA;
②根据(2)①的结论,我们有如下探寻△ABC(其中∠A、∠B、∠C均小于120°)的费马点和费马距离的方法:
第一步:如图(D),在△ABC的外部以BC为边长作等边△BCD及其外接圆;
第二步:在上任取一点P′,连接P′A、P′B、P′C、P′D.易知P′A+P′B+P′C=P′A+(P′B+P′C)=P′A+______;
第三步:请你根据(1)①中定义,在图(D)中找出△ABC的费马点P,并请指出线段______的长度即为△ABC的费马距离.

(3)知识应用:
2010年4月,我国西南地区出现了罕见的持续干旱现象,许多村庄出现了人、畜饮水困难,为解决老百姓的饮水问题,解放军某部来到云南某地打井取水.
已知三村庄A、B、C构成了如图(E)所示的△ABC(其中∠A、∠B、∠C均小于120°),现选取一点P打水井,使从水井P到三村庄A、B、C所铺设的输水管总长度最小,求输水管总长度的最小值.

查看答案和解析>>

科目: 来源:第25章《图形的变换》中考题集(14):25.2 旋转变换(解析版) 题型:解答题

如图1,若△ABC和△ADE为等边三角形,M,N分别EB,CD的中点,易证:CD=BE,△AMN是等边三角形.

(1)当把△ADE绕A点旋转到图2的位置时,CD=BE是否仍然成立?若成立,请证明,若不成立,请说明理由;
(2)当△ADE绕A点旋转到图3的位置时,△AMN是否还是等边三角形?若是,请给出证明,并求出当AB=2AD时,△ADE与△ABC及△AMN的面积之比;若不是,请说明理由.

查看答案和解析>>

科目: 来源:第25章《图形的变换》中考题集(14):25.2 旋转变换(解析版) 题型:解答题

我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.
(1)写出你所学过的特殊四边形中是勾股四边形的两种图形的名称正方形、长方形、直角梯形(任选两个均可);
(2)如图1,已知格点(小正方形的顶点)O(0,0),A(3,0),B(0,4),请你画出以格点为顶点,OA,OB为勾股边且对角线相等的勾股四边形OAMB;
(3)如图2,将△ABC绕顶点B按顺时针方向旋转60°,得到△DBE,连接AD,DC,∠DCB=30度.求证:DC2+BC2=AC2,即四边形ABCD是勾股四边形.

查看答案和解析>>

科目: 来源:第25章《图形的变换》中考题集(14):25.2 旋转变换(解析版) 题型:解答题

已知:在△ABC中,BC>AC,动点D绕△ABC的顶点A逆时针旋转,且AD=BC,连接DC.过AB、DC的中点E、F作直线,直线EF与直线AD、BC分别相交于点M、N.
(1)如图1,当点D旋转到BC的延长线上时,点N恰好与点F重合,取AC的中点H,连接HE、HF,根据三角形中位线定理和平行线的性质,可得结论∠AMF=∠BNE(不需证明);
(2)当点D旋转到图2或图3中的位置时,∠AMF与∠BNE有何数量关系?请分别写出猜想,并任选一种情况证明.

查看答案和解析>>

科目: 来源:第25章《图形的变换》中考题集(14):25.2 旋转变换(解析版) 题型:解答题

已知:如图,把△ABC绕边BC的中点O旋转180°得到△DCB.
求证:四边形ABDC是平行四边形.

查看答案和解析>>

科目: 来源:第25章《图形的变换》中考题集(14):25.2 旋转变换(解析版) 题型:解答题

如图,已知平行四边形ABCD的对角线AC,BD相交于点O,BD绕点O顺时针旋转交AB,DC于E,F.
(1)证明:四边形BFDE是平行四边形;
(2)BD绕点O顺时针旋转______度时,平行四边形BFDE为菱形?请说明理由.

查看答案和解析>>

同步练习册答案