相关习题
 0  126294  126302  126308  126312  126318  126320  126324  126330  126332  126338  126344  126348  126350  126354  126360  126362  126368  126372  126374  126378  126380  126384  126386  126388  126389  126390  126392  126393  126394  126396  126398  126402  126404  126408  126410  126414  126420  126422  126428  126432  126434  126438  126444  126450  126452  126458  126462  126464  126470  126474  126480  126488  366461 

科目: 来源:第35章《圆(二)》中考题集(40):35.5 圆与圆的位置关系(解析版) 题型:解答题

已知多边形ABDEC是由边长为2的等边三角形ABC和正方形BDEC组成,一圆过A、D、E三点,求该圆半径的长.

查看答案和解析>>

科目: 来源:第35章《圆(二)》中考题集(40):35.5 圆与圆的位置关系(解析版) 题型:解答题

阅读材料并解答问题:
与正三角形各边都相切的圆叫做正三角形的内切圆,与正四边形各边都相切的圆叫做正四边形的内切圆,与正n边形各边都相切的圆叫做正n边形的内切圆,设正n(n≥3)边形的面积为S正n边形,其内切圆的半径为r,试探索正n边形的面积.

(1)如图1,当n=3时,设AB切⊙P于点C,连接OC,OA,OB,
∴OC⊥AB,
∴OA=OB,
∴∠AOC=∠AOB,∴AB=2BC.
在Rt△AOC中,
∵∠AOC==60°,OC=r,
∴AC=r•tan60°,∴AB=2r•tan60°,
∴S△OAB=•r•2r•tan60°=r2tan60°,
∴S正三角形=3S△OAB=3r2•tan60度.
(2)如图2,当n=4时,仿照(1)中的方法和过程可求得:S正四边形=4S△OAB=______;
(3)如图3,当n=5时,仿照(1)中的方法和过程求S正五边形
(4)如图4,根据以上探索过程,请直接写出S正n边形=______.

查看答案和解析>>

科目: 来源:第35章《圆(二)》中考题集(40):35.5 圆与圆的位置关系(解析版) 题型:解答题

如图1、图2分别是两个相同正方形、正六边形,其中一个正多边形的顶点在另一个正多边形外接圆圆心O处.
(1)求图1中,重叠部分面积与阴影部分面积之比;
(2)求图2中,重叠部分面积与阴影部分面积之比(直接出答案);
(3)根据前面探索和图3,你能否将本题推广到一般的正n边形情况,(n为大于2的偶数)若能,写出推广问题和结论;若不能,请说明理由.

查看答案和解析>>

科目: 来源:第35章《圆(二)》中考题集(40):35.5 圆与圆的位置关系(解析版) 题型:解答题

如图,已知边长为2cm的正六边形ABCDEF,点A1,B1,C1,D1,E1,F1分别为所在各边的中点,求图中阴影部分的总面积S.

查看答案和解析>>

科目: 来源:第35章《圆(二)》中考题集(40):35.5 圆与圆的位置关系(解析版) 题型:解答题

如图,已知正三角形的边长2a
(1)求它的内切圆与外接圆组成的圆环的面积;
(2)根据计算结果,要求圆环的面积,只需测量哪一条弦的大小就可算出圆环的面积?
(3)将条件中的“正三角形”改为“正方形”、“正六边形”你能得出怎样的结论;
(4)已知正n边形的边长为2a,请写出它的内切圆与外接圆组成的圆环的面积.

查看答案和解析>>

科目: 来源:第35章《圆(二)》中考题集(40):35.5 圆与圆的位置关系(解析版) 题型:解答题

如图的花环状图案中,ABCDEF和A1B1C1D1E1F1都是正六边形.
(1)求证:∠1=∠2;
(2)找出一对全等的三角形并给予证明.

查看答案和解析>>

科目: 来源:第35章《圆(二)》中考题集(40):35.5 圆与圆的位置关系(解析版) 题型:解答题

阅读下列材料,然后解答问题.
经过正四边形(即正方形)各顶点的圆叫作这个正四边形的外接圆,圆心是正四边形的对称中心,这个正四边形叫作这个圆的内接正四边形.
如图,已知正四边形ABCD的外接圆⊙O,⊙O的面积为S1,正四边形ABCD的面积为S2,以圆心O为顶点作∠MON,使∠MON=90°,将∠MON绕点O旋转,OM、ON分别与⊙O相交于点E、F,分别与正四边形ABCD的边相交于点G、H.设由OE、OF、及正四边形ABCD的边围成的图形(图中的阴影部分)的面积为S.①
(1)当OM经过点A时(如图①),则S、S1、S2之间的关系为:S=______(用含S1、S2的代数式表示);
(2)当OM⊥AB时(如图②),点G为垂足,则(1)中的结论仍然成立吗?请说明理由;
(3)当∠MON旋转到任意位置时(如图③),则(1)中的结论仍然成立吗?请说明理由.

查看答案和解析>>

科目: 来源:第35章《圆(二)》中考题集(40):35.5 圆与圆的位置关系(解析版) 题型:解答题

如图,⊙O是等边三角形ABC的外接圆,已知△ABC的边长为a,求图中阴影部分的面积.

查看答案和解析>>

科目: 来源:第35章《圆(二)》中考题集(40):35.5 圆与圆的位置关系(解析版) 题型:解答题

请你类比一条直线和一个圆的三种位置关系,在图,在①、②、③中,分别各画出一条直线,使它与两个圆都相离、都相切、都相交,并在图④中也画上一条直线,使它与两个圆具有不同于前面3种情况的位置关系.

查看答案和解析>>

科目: 来源:第35章《圆(二)》中考题集(40):35.5 圆与圆的位置关系(解析版) 题型:解答题

如图,在平面直角坐标系中,点O1的坐标为(-4,0),以点O1为圆心,8为半径的圆与x轴交于A、B两点,过点A作直线l与x轴负方向相交成60°角.以点O2(13,5)为圆心的圆与x轴相切于点D.

(1)求直线l的解析式;
(2)将⊙O2以每秒1个单位的速度沿x轴向左平移,同时直线l沿x轴向右平移,当⊙O2第一次与⊙O1相切时,直线l也恰好与⊙O2第一次相切,求直线l平移的速度;
(3)将⊙O2沿x轴向右平移,在平移的过程中与x轴相切于点E,EG为⊙O2的直径,过点A作⊙O2的切线,切⊙O2于另一点F,连接AO2、FG,那么FG•AO2的值是否会发生变化?如果不变,说明理由并求其值;如果变化,求其变化范围.

查看答案和解析>>

同步练习册答案