相关习题
 0  126472  126480  126486  126490  126496  126498  126502  126508  126510  126516  126522  126526  126528  126532  126538  126540  126546  126550  126552  126556  126558  126562  126564  126566  126567  126568  126570  126571  126572  126574  126576  126580  126582  126586  126588  126592  126598  126600  126606  126610  126612  126616  126622  126628  126630  126636  126640  126642  126648  126652  126658  126666  366461 

科目: 来源:第34章《二次函数》中考题集(41):34.4 二次函数的应用(解析版) 题型:解答题

如图①,在平面直角坐标系中,Rt△AOB≌Rt△CDA,且A(-1,0)、B(0,2),抛物线y=ax2+ax-2经过点C.
(1)求抛物线的解析式;
(2)在抛物线(对称轴的右侧)上是否存在两点P、Q,使四边形ABPQ是正方形?若存在,求点P、Q的坐标,若不存在,请说明理由;
(3)如图②,E为BC延长线上一动点,过A、B、E三点作⊙O′,连接AE,在⊙O′上另有一点F,且AF=AE,AF交BC于点G,连接BF.下列结论:①BE+BF的值不变;②,其中有且只有一个成立,请你判断哪一个结论成立,并证明成立的结论.

查看答案和解析>>

科目: 来源:第34章《二次函数》中考题集(41):34.4 二次函数的应用(解析版) 题型:解答题

一园林设计师要使用长度为4L的材料建造如图1所示的花圃,该花圃是由四个形状、大小完全一样的扇环面组成,每个扇环面如图2所示,它是以点O为圆心的两个同心圆弧和延长后通过O点的两条直线段围成,为使得绿化效果最佳,还须使得扇环面积最大.
(1)求使图1花圃面积为最大时R-r的值及此时花圃面积,其中R、r分别为大圆和小圆的半径;
(2)若L=160m,r=10m,求使图2面积为最大时的θ值.

查看答案和解析>>

科目: 来源:第34章《二次函数》中考题集(41):34.4 二次函数的应用(解析版) 题型:解答题

已知圆P的圆心在反比例函数y=(k>1)图象上,并与x轴相交于A、B两点.且始终与y轴相切于定点C(0,1).
(1)求经过A、B、C三点的二次函数图象的解析式;
(2)若二次函数图象的顶点为D,问当k为何值时,四边形ADBP为菱形.

查看答案和解析>>

科目: 来源:第34章《二次函数》中考题集(41):34.4 二次函数的应用(解析版) 题型:解答题

如图,平面上一点P从点M(,1)出发,沿射线OM方向以每秒1个单位长度的速度作匀速运动,在运动过程中,以OP为对角线的矩形OAPB的边长OA:OB=1:;过点O且垂直于射线OM的直线l与点P同时出发,且与点P沿相同的方向、以相同的速度运动.
(1)在点P运动过程中,试判断AB与y轴的位置关系,并说明理由.
(2)设点P与直线l都运动了t秒,求此时的矩形OAPB与直线l在运动过程中所扫过的区域的重叠部分的面积S.(用含t的代数式表示)

查看答案和解析>>

科目: 来源:第34章《二次函数》中考题集(41):34.4 二次函数的应用(解析版) 题型:解答题

如图所示,菱形ABCD的边长为6cm,∠DAB=60°,点M是边AD上一点,DM=2cm,点E、F分别从A、C同时出发,以1cm/s的速度分别沿边AB、CB向点B运动,EM、CD的延长线相交于G,GF交AD于O.设运动时间为x(s),△CGF的面积为y(cm2).
(1)当x为何值时,GD的长度是2cm?
(2)求y与x之间的函数关系式;
(3)是否存在某一时刻,使得线段GF把菱形ABCD分成的上、下两部分的面积之比为1:5?若存在,求出此时x的值;若不存在,说明理由.

查看答案和解析>>

科目: 来源:第34章《二次函数》中考题集(41):34.4 二次函数的应用(解析版) 题型:解答题

在△ABC中,∠C=Rt∠,AC=4cm,BC=5cm,点D在BC上,并且CD=3cm,现有两个动点P、Q分别从点A和点B同时出发,其中点P以1cm/s的速度,沿AC向终点C移动;点Q以1.25cm/s的速度沿BC向终点C移动.过点P作PE∥BC交AD于点E,连接EQ,设动点运动时间为x秒.
(1)用含x的代数式表示AE、DE的长度;
(2)当点Q在BD(不包括点B、D)上移动时,设△EDQ的面积为y(cm2),求y与x的函数关系式,并写出自变量x的取值范围;
(3)当x为何值时,△EDQ为直角三角形?

查看答案和解析>>

科目: 来源:第34章《二次函数》中考题集(41):34.4 二次函数的应用(解析版) 题型:解答题

如图,已知平面直角坐标系xOy中,点A(m,6),B(n,1)为两动点,其中0<m<3,连接OA,OB,OA⊥OB.
(1)求证:mn=-6;
(2)当S△AOB=10时,抛物线经过A,B两点且以y轴为对称轴,求抛物线对应的二次函数的关系式;
(3)在(2)的条件下,设直线AB交y轴于点F,过点F作直线l交抛物线于P,Q两点,问是否存在直线l,使S△POF:S△QOF=1:3?若存在,求出直线l对应的函数关系式;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:第34章《二次函数》中考题集(41):34.4 二次函数的应用(解析版) 题型:解答题

如图1,在平面直角坐标系中,点A的坐标为(1,2),点B的坐标为(3,1),二次函数y=x2的图象记为抛物线l1
(1)平移抛物线l1,使平移后的抛物线过点A,但不过点B,写出平移后的一个抛物线的函数表达式:______(任写一个即可);
(2)平移抛物线l1,使平移后的抛物线过A,B两点,记为抛物线l2,如图2,求抛物线l2的函数表达式;
(3)设抛物线l2的顶点为C,K为y轴上一点.若S△ABK=S△ABC,求点K的坐标;
(4)请在图3上用尺规作图的方式探究抛物线l2上是否存在点P,使△ABP为等腰三角形.若存在,请判断点P共有几个可能的位置(保留作图痕迹);若不存在,请说明理由.

查看答案和解析>>

科目: 来源:第34章《二次函数》中考题集(41):34.4 二次函数的应用(解析版) 题型:解答题

如图1,已知点A1,A2,A3是抛物线y=x2上的三点,线段A1B1,A2B2,A3B3都垂直于x轴,垂足分别为点B1,B2,B3,延长线段B2A2交线段A1A3于点C.
(1)在图(1)中,若点A1,A2,A3的横坐标依次为1,2,3,求线段CA2的长;
(2)若将抛物线改为y=x2-x+1,如图2,点A1,A2,A3的横坐标依次为三个连续整数,其他条件不变,求线段CA2的长.

查看答案和解析>>

科目: 来源:第34章《二次函数》中考题集(41):34.4 二次函数的应用(解析版) 题型:解答题

如图,直线y=2x-4与x轴交于点A,与y轴交于点B,以x轴上点M为圆心,过A、B两点作⊙M与x轴交于另一点C.
(1)求⊙M的半径及圆心M的坐标;
(2)①求经过A、B、C三点的抛物线的顶点D的坐标;
②求证:DB是⊙M的切线;
(3)若半径为1的⊙P与x轴和直线BD都相切,请直接写出点P的坐标.

查看答案和解析>>

同步练习册答案