相关习题
 0  126504  126512  126518  126522  126528  126530  126534  126540  126542  126548  126554  126558  126560  126564  126570  126572  126578  126582  126584  126588  126590  126594  126596  126598  126599  126600  126602  126603  126604  126606  126608  126612  126614  126618  126620  126624  126630  126632  126638  126642  126644  126648  126654  126660  126662  126668  126672  126674  126680  126684  126690  126698  366461 

科目: 来源:第34章《二次函数》中考题集(28):34.4 二次函数的应用(解析版) 题型:解答题

用大小相同的黑白两色小正方形瓷砖拼成如图所示的图形,观察图形并回答下列问题:
(1)当n=8时,图中白瓷砖有______块;?
(2)第m个图中,若大正方形图形所用的瓷砖的总块数用y来表示,试求y关于m的函数关系式;
(3)黑瓷砖与白瓷砖的块数有可能相等吗?为什么??

查看答案和解析>>

科目: 来源:第34章《二次函数》中考题集(28):34.4 二次函数的应用(解析版) 题型:解答题

某通讯器材公司销售一种市场需求较大的新型通讯产品.已知每件产品的进价为40元,每年销售该种产品的总开支(不含进价)总计120万元.在销售过程中发现,年销售量y(万件)与销售单价x(元)之间存在着如图所示的一次函数关系.
(1)求y关于x的函数关系式;
(2)试写出该公司销售该种产品的年获利z(万元)关于销售单价x(元)的函数关系式(年获利=年销售额一年销售产品总进价一年总开支).当销售单价x为何值时,年获利最大并求这个最大值;
(3)若公司希望该种产品一年的销售获利不低于40万元,借助(2)中函数的图象,请你帮助该公司确定销售单价的范围.在此情况下,要使产品销售量最大,你认为销售单价应定为多少元?

查看答案和解析>>

科目: 来源:第34章《二次函数》中考题集(28):34.4 二次函数的应用(解析版) 题型:解答题

一辆电瓶车在实验过程中,前10秒行驶的路程s(米)与时间t(秒)满足关系式s=at2,第10秒末开始匀速行驶,第24秒末开始刹车,第28秒末停在离终点20米处.下图是电瓶车行驶过程中第2秒记录一次的图象.
(1)求电瓶车从出发到刹车时的路程s(米)与时间t(秒)的函数关系式.
(2)如果第24秒末不刹车继续匀速行驶,那么出发多少秒后通过终点?
(3)如果10秒后仍按s=at2的运动方式行驶,那么出发多少秒后通过终点?
(参考数据:≈2.24,≈2.45,计算结果保留两个有效数字.)

查看答案和解析>>

科目: 来源:第34章《二次函数》中考题集(28):34.4 二次函数的应用(解析版) 题型:解答题

一列火车自A城驶往B城,沿途有n个车站(包括起点站A和终点站B),该列火车挂有一节邮政车厢,运行时需要在每个车站停靠,每停靠一站不仅要卸下已经通过的各车站发给该站的邮包一个,还要装上该站发往下面行程中每个车站的邮包一个.
例如,当列车停靠在第x个车站时,邮政车厢上需要卸下已经通过的(x-1)个车站发给该站的邮包共(x-1)个,还要装上下面行程中要停靠的(n-x)个车站的邮包共(n-x)个.
(1)根据题意,完成下表:
车站序号在第x个车站起程时邮政车厢邮包总数
1n-1
2(n-1)-1+(n-2)=2(n-2)
32(n-2)-2+(n-3)=3(n-3)
4
5
n
(2)根据上表,写出列车在第x车站启程时,邮政车厢上共有邮包的个数y(用x、n表示);
(3)当n=18时,列车在第几个车站启程时邮政车厢上邮包的个数最多?

查看答案和解析>>

科目: 来源:第34章《二次函数》中考题集(28):34.4 二次函数的应用(解析版) 题型:解答题

如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为Q(2,-1),且与y轴交于点C(0,3),与x轴交于A,B两点(点A在点B的右侧),点P是该抛物线上的一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P作PD∥y轴,交AC于点D.
(1)求该抛物线的函数关系式;
(2)当△ADP是直角三角形时,求点P的坐标;
(3)在题(2)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:第34章《二次函数》中考题集(28):34.4 二次函数的应用(解析版) 题型:解答题

如图,在直角坐标平面内,O为坐标原点,A点的坐标为(1,0),B点在x轴上且在点A的右侧,AB=OA,过点A和B作x轴的垂线分别交二次函数y=x2图象于点C和D,直线OC交BD于M,直线CD交y轴于点H.记C、D的横坐标分别为xc,xD,于点H的纵坐标yH
(1)证明:①S△CMD:S梯形ABMC=2:3;②xc•xD=-yH
(2)若将上述A点坐标(1,0)改为A点坐标(t,0)(t>0),其他条件不变,结论S△CMD:S梯形ABMC=2:3是否仍成立?请说明理由.
(3)若A的坐标(t,0)(t>0),又将条件y=x2改为y=ax2(a>0),其他条件不变,那么xc,xD和yH又有怎样的数量关系?写出关系式,并证明.

查看答案和解析>>

科目: 来源:第34章《二次函数》中考题集(28):34.4 二次函数的应用(解析版) 题型:解答题

已知直角坐标系中有一点A(-4,3),点B在x轴上,△AOB是等腰三角形.
(1)求满足条件的所有点B的坐标;
(2)求过O,A,B三点且开口向下的抛物线的函数表达式(只需求出满足条件的一条即可);
(3)在(2)中求出的抛物线上存在点P,使得以O,A,B,P四点为顶点的四边形是梯形,求满足条件的所有点P的坐标及相应梯形的面积.

查看答案和解析>>

科目: 来源:第34章《二次函数》中考题集(28):34.4 二次函数的应用(解析版) 题型:解答题

如图,平面直角坐标系中有一矩形ABCO(O为原点),点A、C分别在x轴、y轴上,且C点坐标为(0,6);将BCD沿BD折叠(D点在OC边上),使C点落在OA边的E点上,并将BAE沿BE折叠,恰好使点A落在BD的点F上.
(1)直接写出∠ABE、∠CBD的度数,并求折痕BD所在直线的函数解析式;
(2)过F点作FG⊥x轴,垂足为G,FG的中点为H,若抛物线y=ax2+bx+c经过B、H、D三点,求抛物线的函数解析式;
(3)若点P是矩形内部的点,且点P在(2)中的抛物线上运动(不含B、D点),过点P作PN⊥BC分别交BC和BD于点N、M,设h=PM-MN,试求出h与P点横坐标x的函数解析式,并画出该函数的简图,分别写出使PM<NM、PM=MN、PM>MN成立的x的取值范围.

查看答案和解析>>

科目: 来源:第34章《二次函数》中考题集(28):34.4 二次函数的应用(解析版) 题型:解答题

在平面直角坐标系中,抛物线过原点O,且与x轴交于另一点A,其顶点为B.孔明同学用一把宽为3cm带刻度的矩形直尺对抛物线进行如下测量:
①量得OA=3cm;
②把直尺的左边与抛物线的对称轴重合,使得直尺左下端点与抛物线的顶点重合(如图1),测得抛物线与直尺右边的交点C的刻度读数为4.5.
请完成下列问题:
(1)写出抛物线的对称轴;
(2)求抛物线的解析式;
(3)将图中的直尺(足够长)沿水平方向向右平移到点A的右边(如图2),直尺的两边交x轴于点H、G,交抛物线于点E、F.求证:S梯形EFGH=(EF2-9).

查看答案和解析>>

科目: 来源:第34章《二次函数》中考题集(29):34.4 二次函数的应用(解析版) 题型:解答题

已知二次函数y=x2+bx+c+1的图象过点P(2,1).
(1)求证:c=-2b-4;
(2)求bc的最大值;
(3)若二次函数的图象与x轴交于点A(x1,0)、B(x2,0),△ABP的面积是,求b的值.

查看答案和解析>>

同步练习册答案