相关习题
 0  126520  126528  126534  126538  126544  126546  126550  126556  126558  126564  126570  126574  126576  126580  126586  126588  126594  126598  126600  126604  126606  126610  126612  126614  126615  126616  126618  126619  126620  126622  126624  126628  126630  126634  126636  126640  126646  126648  126654  126658  126660  126664  126670  126676  126678  126684  126688  126690  126696  126700  126706  126714  366461 

科目: 来源:第34章《二次函数》中考题集(22):34.4 二次函数的应用(解析版) 题型:解答题

今年我国多个省市遭受严重干旱,受旱灾的影响,4月份,我市某蔬菜价格呈上升趋势,其前四周每周的平均销售价格变化如下表:
周数x1234
价格y(元/kg)22.22.42.6
进入5月,由于本地蔬菜的上市,此种蔬菜的平均销售价格y(元/千克)从5月第1周的2.8元/千克下降至第2周的2.4元/千克,且y与周数x的变化情况满足二次函数y=-x2+bx+c.
(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识直接写出4月份y与x的函数关系式,并求出5月份y与x的函数关系式;
(2)若4月份此种蔬菜的进价m(元/千克)与周数x所满足的函数关系为m=x+1.2,5月份此种蔬菜的进价m(元/千克)与周数x所满足的函数关系为m=x+2.试问4月份与5月份分别在哪一周销售此种蔬菜一千克的利润最大?且最大利润分别是多少?
(3)若5月份的第2周共销售100吨此种蔬菜.从5月份的第3周起,由于受暴雨的影响,此种蔬菜的可供销量将在第2周销量的基础上每周减少a%,政府为稳定蔬菜价格,从外地调运2吨此种蔬菜,刚好满足本地市民的需要,且使此种蔬菜的销售价格比第2周仅上涨0.8a%.若在这一举措下,此种蔬菜在第3周的总销售额与第2周刚好持平,请你参考以下数据,通过计算估算出a的整数值.
(参考数据:372=1369,382=1444,392=1521,402=1600,412=1681)

查看答案和解析>>

科目: 来源:第34章《二次函数》中考题集(22):34.4 二次函数的应用(解析版) 题型:解答题

如图1,某灌溉设备的喷头B高出地面1.25m,喷出的抛物线形水流在与喷头底部A的距离为1m处达到距地面最大高度2.25m,试在恰当的直角坐标系中求出与该抛物线水流对应的二次函数关系式.
学生小龙在解答图1所示的问题时,具体解答如下:
①以水流的最高点为原点,过原点的水平线为横轴,过原点的铅垂线为纵轴,建立如图
2所示的平面直角坐标系;
②设抛物线水流对应的二次函数关系式为y=ax2
③根据题意可得B点与x轴的距离为1m,故B点的坐标为(-1,1);
④代入y=ax2得-1=a•1,所以a=-1;
⑤所以抛物线水流对应的二次函数关系式为y=-x2
数学老师看了小龙的解题过程说:“小龙的解答是错误的”.
(1)请指出小龙的解答从第______步开始出现错误,错误的原因是什么?
(2)请你写出完整的正确解答过程.

查看答案和解析>>

科目: 来源:第34章《二次函数》中考题集(22):34.4 二次函数的应用(解析版) 题型:解答题

X市与W市之间的城际铁路正在紧张有序的建设中,在建成通车前,进行了社会需求调查,得到一列火车一天往返次数m与该列车每次拖挂车厢节数如下:
车厢节数n4710
往返次数m16104
(1)请你根据上表数据,在三个函数模型:①y=kx+b(k,b为常数,k≠0);②y=(k为常数,k≠0)③y=ax2+bx+c(a,b,c为常数,a≠0)中,选取一个合适的函数模型,求出的m关于n的函数关系式是m=______(不写n的取值范围);
(2)结合你的求出的函数探究一列火车每次挂多少节车厢,一天往返多少次时,一天的设计运营人数Q最多(每节车厢容量设定为常数p)

查看答案和解析>>

科目: 来源:第34章《二次函数》中考题集(22):34.4 二次函数的应用(解析版) 题型:解答题

某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满.当每个房间每天的房价每增加10元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每天支出20元的各种费用.根据规定,每个房间每天的房价不得高于340元.设每个房间的房价增加x元(x为10的正整数倍).
(1)设一天订住的房间数为y,直接写出y与x的函数关系式及自变量x的取值范围;
(2)设宾馆一天的利润为w元,求w与x的函数关系式;
(3)一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?

查看答案和解析>>

科目: 来源:第34章《二次函数》中考题集(22):34.4 二次函数的应用(解析版) 题型:解答题

用长度为20m的金属材料制成如图所示的金属框,下部为矩形,上部为等腰直角三角形,其斜边长为2xm.当该金属框围成的图形面积最大时,图形中矩形的相邻两边长各为多少?请求出金属框围成的图形的最大面积.

查看答案和解析>>

科目: 来源:第34章《二次函数》中考题集(22):34.4 二次函数的应用(解析版) 题型:解答题

学校计划用地面砖铺设教学楼前矩形广场的地面ABCD,已知矩形广场地面的长为100米,宽为80米.图案设计如图所示:广场的四角为小正方形,阴影部分为四个矩形,四个矩形的宽都为小正方形的边长,阴影部分铺绿色地面砖,其余部分铺白色地面砖.
(1)要使铺白色地面砖的面积为5200平方米,那么矩形广场四角的小正方形的边长为多少米?
(2)如果铺白色地面砖的费用为每平方米30元.铺绿色地面砖的费用为每平方米20元,当广场四角小正方形的边长为多少米时,铺广场地面的总费用最少?最少费用是多少?

查看答案和解析>>

科目: 来源:第34章《二次函数》中考题集(22):34.4 二次函数的应用(解析版) 题型:解答题

某公司经销一种绿茶,每千克成本为50元.市场调查发现,在一段时间内,销售量w(千克)随销售单价x(元/千克)的变化而变化,具体关系式为:w=-2x+240.设这种绿茶在这段时间内的销售利润为y(元),解答下列问题:
(1)求y与x的关系式;
(2)当x取何值时,y的值最大?
(3)如果物价部门规定这种绿茶的销售单价不得高于90元/千克,公司想要在这段时间内获得2250元的销售利润,销售单价应定为多少元?

查看答案和解析>>

科目: 来源:第34章《二次函数》中考题集(22):34.4 二次函数的应用(解析版) 题型:解答题

近期以来,大蒜和绿豆的市场价格离奇攀升,网民戏称为“蒜你狠”,“豆你玩”.以绿豆为例,5月份上旬的市场价格已达16元/千克.市政府决定采取价格临时干预措施,调进绿豆以平抑市场价格.经市场调研预测,该市每调进100吨绿豆,市场价格就下降1元/千克.为了即能平抑市场价格,又要保护豆农的生产积极性,绿豆的市场价格控制在8元/千克到10元/千克之间(含8元/千克和10元/千克).问调进绿豆的吨数应在什么范围内为宜?

查看答案和解析>>

科目: 来源:第34章《二次函数》中考题集(22):34.4 二次函数的应用(解析版) 题型:解答题

某公司有甲,乙两个绿色农产品种植基地,在收获期这两个基地当天收获的某种农产品,一部分存入仓库,另一部分运往外地销售,根据经验,该农产品在收获过程中两个种植基地累积总产量y(吨)与收获天数x(天)满足函数关系y=2x+3(1≤x≤10且x为整数).该农产品在收获过程中甲,乙两基地累积产量分别占两基地累积总产量的百分比和甲,乙两基地累积存入仓库的量分别占甲,乙两基地的累积产量的百分比如下表:
项目
百分比
种植基地
该基地的累积产量占两基地累积总产量的百分比该基地累积存入仓库的量占该基地的累积产量的百分比
60%85%
40%22.5%
(1)请用含y的代数式分别表示在收获过程中甲,乙两个基地累积存入仓库的量;
(2)设在收获过程中甲,乙两基地累积存入仓库的该种农产品的总量为p(吨),请求出p(吨)与收获天数x(天)的函数关系式;
(3)在(2)的基础上,若仓库内原有该种农产品42.6吨,为满足本地市场需求,在此收获期开始的同时,每天从仓库调出一部分该种农产品投入本地市场,若在本地市场售出该种农产品总量m(吨)与收获天x(天)满足函数关系m=-x2+13.2x-1.6(1≤x≤10且x为整数).问在此收获期内连续销售几天,该农产品库存量达到最低值?最低库存量是多少吨?

查看答案和解析>>

科目: 来源:第34章《二次函数》中考题集(22):34.4 二次函数的应用(解析版) 题型:解答题

儿童商场购进一批M型服装,销售时标价为75元/件,按8折销售仍可获利50%.商场现决定对M型服装开展促销活动,每件在8折的基础上再降价x元销售,已知每天销售数量y(件)与降价x(元)之间的函数关系式为y=20+4x(x>0).
(1)求M型服装的进价;
(2)求促销期间每天销售M型服装所获得的利润W的最大值.

查看答案和解析>>

同步练习册答案