相关习题
 0  127007  127015  127021  127025  127031  127033  127037  127043  127045  127051  127057  127061  127063  127067  127073  127075  127081  127085  127087  127091  127093  127097  127099  127101  127102  127103  127105  127106  127107  127109  127111  127115  127117  127121  127123  127127  127133  127135  127141  127145  127147  127151  127157  127163  127165  127171  127175  127177  127183  127187  127193  127201  366461 

科目: 来源:第2章《二次函数》中考题集(48):2.3 二次函数的应用(解析版) 题型:解答题

如图一,平面直角坐标系中有一张矩形纸片OABC,O为坐标原点,A点坐标为(10,0),C点坐标为(0,6),D是BC边上的动点(与点B,C不重合),现将△COD沿OD翻折,得到△FOD;再在AB边上选取适当的点E,将△BDE沿DE翻折,得到△GDE,并使直线DG、DF重合.
(1)如图二,若翻折后点F落在OA边上,求直线DE的函数关系式;
(2)设D(a,6),E(10,b),求b关于a的函数关系式,并求b的最小值;
(3)一般地,请你猜想直线DE与抛物线y=-x2+6的公共点的个数,在图二的情形中通过计算验证你的猜想;如果直线DE与抛物线y=-x2+6始终有公共点,请在图一中作出这样的公共点.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(48):2.3 二次函数的应用(解析版) 题型:解答题

已知抛物线y=ax2+bx+c(a≠0)与x轴交于不同的两点A(x1,0)和B(x2,0),与y轴的正半轴交于点C.如果x1、x2是方程x2-x-6=0的两个根(x1<x2),且△ABC的面积为
(1)求此抛物线的解析式;
(2)求直线AC和BC的方程;
(3)如果P是线段AC上的一个动点(不与点A、C重合),过点P作直线y=m(m为常数),与直线BC交于点Q,则在x轴上是否存在点R,使得△PQR为等腰直角三角形?若存在,求出点R的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(48):2.3 二次函数的应用(解析版) 题型:解答题

如图,正方形ABCD的边长为5cm,Rt△EFG中,∠G=90°,FG=4cm,EG=3cm,且点B、F、C、G在直线l上,△EFG由F、C重合的位置开始,以1cm/秒的速度沿直线l按箭头所表示的方向作匀速直线运动.
(1)当△EFG运动时,求点E分别运动到CD上和AB上的时间;
(2)设x(秒)后,△EFG与正方形ABCD重合部分的面积为y(cm2),求y与x的函数关系式;
(3)在下面的直角坐标系中,画出0≤x≤2时中函数的大致图象;如果以O为圆心的圆与该图象交于点P(x,),与x轴交于点A、B(A在B的左侧),求∠PAB的度数.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(48):2.3 二次函数的应用(解析版) 题型:解答题

如图,已知抛物线y=x2-2x+n与x轴交于不同的两点A,B,其顶点是C,D是抛物线的对称轴与x轴的交点.
(1)求实数n的取值范围.
(2)求顶点C的坐标;
(3)求线段AB的长;
(4)若直线y=x+1分别交x轴于E,交y轴于F,问△BDC与△EOF是否有可能全等?如果有可能全等请给出证明;如果不可能全等请说明理由.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(48):2.3 二次函数的应用(解析版) 题型:解答题

已知:如图,抛物线C1,C2关于x轴对称;抛物线C1,C3关于y轴对称.抛物线C1,C2,C3与x轴相交于A、B、C、D四点;与y相交于E、F两点;H、G、M分别为抛物线C1,C2,C3的顶点.HN垂直于x轴,垂足为N,且|OE|>|HN|,|AB|≠|HG|
(1)A、B、C、D、E、F、G、H、M9个点中,四个点可以连接成一个四边形,请你用字母写出下列特殊四边形:菱形______;等腰梯形______;平行四边形______;梯形______;(每种特殊四边形只能写一个,写错、多写记0分)
(2)证明其中任意一个特殊四边形;
(3)写出你证明的特殊四边形的性质.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(48):2.3 二次函数的应用(解析版) 题型:解答题

已知△ABC是边长为4的等边三角形,BC在x轴上,点D为BC的中点,点A在第一象限内,AB与y轴的正半轴相交于点E,点B(-1,0),P是AC上的一个动点(P与点A、C不重合)
(1)求点A、E的坐标;
(2)若y=x2+bx+c过点A、E,求抛物线的解析式;
(3)连接PB、PD,设L为△PBD的周长,当L取最小值时,求点P的坐标及L的最小值,并判断此时点P是否在(2)中所求的抛物线上,请充分说明你的判断理由.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(48):2.3 二次函数的应用(解析版) 题型:解答题

(以下两小题选做一题,第1小题满分14分,第2小题满分为10分.若两小题都做,以第1小题计分)
选做第______小题.
(1)一张矩形纸片OABC平放在平面直角坐标系内,O为原点,点A在x的正半轴上,点C在y轴的正半轴上,OA=5,OC=4.
①如图,将纸片沿CE对折,点B落在x轴上的点D处,求点D的坐标;
②在①中,设BD与CE的交点为P,若点P,B在抛物线y=x2+bx+c上,求b,c的值;
③若将纸片沿直线l对折,点B落在坐标轴上的点F处,l与BF的交点为Q,若点Q在②的抛物线上,求l的解析式.
(2)一张矩形纸片OABC平放在平面直角坐标系内,O为原点,点A在x的正半轴上,点C在y轴的正半轴上,OA=5,OC=4.
①求直线AC的解析式;
②若M为AC与BO的交点,点M在抛物线y=-x2+kx上,求k的值;
③将纸片沿CE对折,点B落在x轴上的点D处,试判断点D是否在②的抛物线上,并说明理由.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(49):2.3 二次函数的应用(解析版) 题型:解答题

在直角坐标平面中,O为坐标原点,二次函数y=x2+bx+c的图象与x轴的负半轴相交于点C(如图),点C的坐标为(0,-3),且BO=CO
(1)求这个二次函数的解析式;
(2)设这个二次函数的图象的顶点为M,求AM的长.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(49):2.3 二次函数的应用(解析版) 题型:解答题

如图,在直角坐标系中,⊙C过原点O,交x轴于点A(2,0),交y轴于点B(0,).
(1)求圆心的坐标;
(2)抛物线y=ax2+bx+c过O、A两点,且顶点在正比例函数y=-x的图象上,求抛物线的解析式;
(3)过圆心C作平行于x轴的直线DE,交⊙C于D、E两点,试判断D、E两点是否在(2)中的抛物线上;
(4)若(2)中的抛物线上存在点P(x,y),满足∠APB为钝角,求x的取值范围.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(49):2.3 二次函数的应用(解析版) 题型:解答题

如图,在直角坐标系中,Rt△AOB的顶点坐标分别为A(0,2),O(0,0),B(4,0),△AOB绕O点按逆时针方向旋转90°得到△COD.
(1)求C、D两点的坐标;
(2)求经过C、D、B三点的抛物线的解析式;
(3)设(2)中的抛物线的顶点为P,AB的中点为M,试判断△PMB是钝角三角形、直角三角形还是锐角三角形,并说明理由.

查看答案和解析>>

同步练习册答案