相关习题
 0  127010  127018  127024  127028  127034  127036  127040  127046  127048  127054  127060  127064  127066  127070  127076  127078  127084  127088  127090  127094  127096  127100  127102  127104  127105  127106  127108  127109  127110  127112  127114  127118  127120  127124  127126  127130  127136  127138  127144  127148  127150  127154  127160  127166  127168  127174  127178  127180  127186  127190  127196  127204  366461 

科目: 来源:第2章《二次函数》中考题集(46):2.3 二次函数的应用(解析版) 题型:解答题

已知:二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中点A的坐标是(-1,0),与y轴负半轴交于点C,其对称轴是直线x=,tan∠BAC=2.
(1)求二次函数y=ax2+bx+c的解析式;
(2)作圆O’,使它经过点A、B、C,点E是AC延长线上一点,∠BCE的平分线CD交圆O’于点D,连接AD、BD,求△ACD的面积;
(3)在(2)的条件下,二次函数y=ax2+bx+c的图象上是否存在点P,使得∠PDB=∠CAD?如果存在,请求出所有符合条件的P点坐标;如果不存在,请说明理由.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(46):2.3 二次函数的应用(解析版) 题型:解答题

如图,已知抛物线y=-x2+bx+c与x轴的两个交点分别为A(x1,0),B(x2,0),且x1+x2=4,
(1)分别求出A,B两点的坐标;
(2)求此抛物线的函数解析式;
(3)设此抛物线与y轴的交点为C,过作直线l与抛物线交于另一点D(点D在x轴上方),连接AC,CB,BD,DA,当四边形ACBD的面积为4时,求点D的坐标和直线l的函数解析式.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(46):2.3 二次函数的应用(解析版) 题型:解答题

如图所示,图(1)是一座抛物线型拱桥在建造过程中装模时的设计示意图,拱高为30m,支柱A3B3=50m,5根支柱A1B1,A2B2,A3B3,A4B4,A5B5之间的距离均为15m,B1B5∥A1A5,将抛物线放在图(2)所示的直角坐标系中
(1)直接写出图(2)中点B1的坐标为______,B3的坐标为______,B5的坐标为______;
(2)求图(2)中抛物线的函数表达式是______;
(3)求图(1)中支柱A2B2的长度为______,A4B4的长度为______.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(46):2.3 二次函数的应用(解析版) 题型:解答题

已知抛物线y=x2+mx-2m2(m≠0).
(1)求证:该抛物线与x轴有两个不同的交点;
(2)过点P(0,n)作y轴的垂线交该抛物线于点A和点B(点A在点P的左边),是否存在实数m、n,使得AP=2PB?若存在,则求出m、n满足的条件;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(46):2.3 二次函数的应用(解析版) 题型:解答题

已知四边形ABCD是矩形,BC>AB,直线MN分别与AB,BC交于E,F两点,P为对角线AC上一动点(P不与A,C重合).
(1)当点E,F分别为AB,BC的中点时,(如图1)问点P在AC上运动时,点P,E,F能否构成直角三角形?若能,共有几个?请在图中画出所有满足条件的三角形.
(2)若AB=3,BC=4,P为AC的中点,当直线MN的移动时,始终保持MN∥AC,(如图2)求△PEF的面积S△PEF与FC的长x之间的函数关系式.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(46):2.3 二次函数的应用(解析版) 题型:解答题

如图所示,在平面直角坐标系xOy中,正方形OABC的边长为2cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B,且12a+5c=0.
(1)求抛物线的解析式;
(2)如果点P由点A开始沿AB边以2cm/s的速度向点B移动,同时点Q由点B开始沿BC边以1cm/s的速度向点C移动.
①移动开始后第t秒时,设S=PQ2(cm2),试写出S与t之间的函数关系式,并写出t的取值范围;
②当S取得最小值时,在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(46):2.3 二次函数的应用(解析版) 题型:解答题

对于任意两个二次函数:y1=a1x2+b1x+c1,y2=a2x2+b2x+c2,(a1a2≠0),当|a1|=|a2|时,我们称这两个二次函数的图象为全等抛物线.
现有△ABM,A(-1,0),B(1,0).记过三点的二次函数抛物线为“C□□□”(“□□□”中填写相应三个点的字母)
(1)若已知M(0,1),△ABM≌△ABN(0,-1).请通过计算判断CABM与CABN是否为全等抛物线;
(2)在图2中,以A、B、M三点为顶点,画出平行四边形.
①若已知M(0,n),求抛物线CABM的解析式,并直接写出所有过平行四边形中三个顶点且能与CABM全等的抛物线解析式.
②若已知M(m,n),当m,n满足什么条件时,存在抛物线CABM根据以上的探究结果,判断是否存在过平行四边形中三个顶点且能与CABM全等的抛物线?若存在,请列出所有满足条件的抛物线“C□□□”;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(48):2.3 二次函数的应用(解析版) 题型:解答题

已知:如图,在坐标平面内,A(0,0),B(12,0),C(12,6),D(0,6),点Q沿DA边从点D开始向点A以1单位/秒的速度移动.点P沿AB边从点A开始向B以2单位/秒的速度移动,假设P、Q同时出发,t表示移动的时间(0≤t≤6).
(1)写出△PQA的面积S与t的函数关系式;
(2)四边形APCQ的面积与t有关吗?请说明理由;(3)当t为何值时,△PQC面积最小,并求此时△PQC的面积;
(4)△APQ能否成轴对称图形?若能,请求出相应的t值,并写出其对称轴的函数关系式;若不能,请说明理由.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(48):2.3 二次函数的应用(解析版) 题型:解答题

已知抛物线y=(1-a)x2+8x+b的图象的一部分如图所示,抛物的顶点在第一象限,且经过点A(0,-7)和点B.
(1)求a的取值范围;
(2)若OA=2OB,求抛物线的解析式.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(48):2.3 二次函数的应用(解析版) 题型:解答题

已知,如图,在直角坐标系中O是坐标原点,四边形AOCB是矩形,0C=6,OA=2,P是边AB上的任意一点.当点P在边AB上移动时,是否存在这样的点P使得OP⊥PC成立?若存在,请求出点P的坐标,画出满足条件的P点,并求出经过D、P、C三点的抛物线的对称轴;若不存在这样的P点,请说明理由.

查看答案和解析>>

同步练习册答案