相关习题
0 127017 127025 127031 127035 127041 127043 127047 127053 127055 127061 127067 127071 127073 127077 127083 127085 127091 127095 127097 127101 127103 127107 127109 127111 127112 127113 127115 127116 127117 127119 127121 127125 127127 127131 127133 127137 127143 127145 127151 127155 127157 127161 127167 127173 127175 127181 127185 127187 127193 127197 127203 127211 366461
科目:
来源:第2章《二次函数》中考题集(43):2.3 二次函数的应用(解析版)
题型:解答题
如图:已知抛物线y=
x
2+
x-4与x轴交于A,B两点,与y轴交于点C,O为坐标原点.
(1)求A,B,C三点的坐标;
(2)已知矩形DEFG的一条边DE在AB上,顶点F,G分别在线段BC,AC上,设OD=m,矩形DEFG的面积为S,求S与m的函数关系式,并指出m的取值范围;
(3)当矩形DEFG的面积S取最大值时,连接对角线DF并延长至点M,使FM=
DF.试探究此时点M是否在抛物线上,请说明理由.
查看答案和解析>>
科目:
来源:第2章《二次函数》中考题集(43):2.3 二次函数的应用(解析版)
题型:解答题
如图,已知抛物线y=ax
2+4ax+t(a>0)交x轴于A、B两点,交y轴于点C,抛物线的对称轴交x轴于点E,点B的坐标为(-1,0).
(1)求抛物线的对称轴及点A的坐标;
(2)过点C作x轴的平行线交抛物线的对称轴于点P,你能判断四边形ABCP是什么四边形?并证明你的结论;
(3)连接CA与抛物线的对称轴交于点D,当∠APD=∠ACP时,求抛物线的解析式.
查看答案和解析>>
科目:
来源:第2章《二次函数》中考题集(43):2.3 二次函数的应用(解析版)
题型:解答题
已知:m、n是方程x
2-6x+5=0的两个实数根,且m<n,抛物线y=-x
2+bx+c的图象经过点
A(m,0)、B(0,n).
(1)求这个抛物线的解析式;
(2)设(1)中抛物线与x轴的另一交点为C,抛物线的顶点为D,试求出点C、D的坐标和△BCD的面积;
(3)P是线段OC上的一点,过点P作PH⊥x轴,与抛物线交于H点,若直线BC把△PCH分成面积之比为2:3的两部分,请求出P点的坐标.
查看答案和解析>>
科目:
来源:第2章《二次函数》中考题集(43):2.3 二次函数的应用(解析版)
题型:解答题
如图1所示,一张三角形纸片ABC,∠ACB=90°,AC=8,BC=6.沿斜边AB的中线CD把这张纸片剪成△AC
1D
1和△BC
2D
2两个三角形(如图所示).将纸片△AC
1D
1沿直线D
2B(AB)方向平移(点A,D
1,D
2,B始终在同一直线上),当点D
1于点B重合时,停止平移.在平移过程中,C
1D
1与BC
2交于点E,AC
1与C
2D
2、BC
2分别交于点F、P.
(1)当△AC
1D
1平移到如图3所示的位置时,猜想图中的D
1E与D
2F的数量关系,并证明你的猜想;
(2)设平移距离D
2D
1为x,△AC
1D
1与△BC
2D
2重叠部分面积为y,请写出y与x的函数关系式,以及自变量的取值范围;
(3)对于(2)中的结论是否存在这样的x的值使得y=
S
△ABC;若不存在,请说明理由.
查看答案和解析>>
科目:
来源:第2章《二次函数》中考题集(43):2.3 二次函数的应用(解析版)
题型:解答题
在平面直角坐标系内有两点A(-2,0),B(
,0),CB所在直线为y=2x+b,
(1)求b与C的坐标;
(2)连接AC,求证:△AOC∽△COB;
(3)求过A,B,C三点且对称轴平行于y轴的抛物线解析式;
(4)在抛物线上是否存在一点P(不与C重合),使得S
△ABP=S
△ABC?若存在,请求出P点坐标;若不存在,请说明理由.
查看答案和解析>>
科目:
来源:第2章《二次函数》中考题集(43):2.3 二次函数的应用(解析版)
题型:解答题
已知抛物线y=ax
2+bx+2与x轴相交于点A(x
1,0),B(x
2,0)(x
1<x
2),且x
1,x
2是方程x
2-2x-3=0的两个实数根,点C为抛物线与y轴的交点.
(1)求a,b的值;
(2)分别求出直线AC和BC的解析式;
(3)若动直线y=m(0<m<2)与线段AC,BC分别相交于D,E两点,则在x轴上是否存在点P,使得△DEP为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.
查看答案和解析>>
科目:
来源:第2章《二次函数》中考题集(43):2.3 二次函数的应用(解析版)
题型:解答题
如图,在直角坐标系中,O为坐标原点,平行四边形OABC的边OA在x轴上,∠B=60°,OA=6,OC=4,D是BC的中点,延长AD交OC的延长线于点E.
(1)画出△ECD关于边CD所在直线为对称轴的对称图形△E
1CD,并求出点E
1的坐标;
(2)求经过C、E
1、B三点的抛物线的函数表达式;
(3)请探求经过C、E
1、B三点的抛物线上是否存在点P,使以点P、B、C为顶点的三角形与△ECD相似?若存在这样的点P,请求出点P的坐标;若不存在这样的点P,请说明理由.
查看答案和解析>>
科目:
来源:第2章《二次函数》中考题集(43):2.3 二次函数的应用(解析版)
题型:解答题
如图,边长为4的正方形OABC的顶点O为坐标原点,点A在x轴的正半轴上,点C在y轴的正半轴上.动点D在线段BC上移动(不与B,C重合),连接OD,过点D作DE⊥OD,交边AB于点E,连接OE.
(1)当CD=1时,求点E的坐标;
(2)如果设CD=t,梯形COEB的面积为S,那么是否存在S的最大值?若存在,请求出这个最大值及此时t的值;若不存在,请说明理由.
查看答案和解析>>
科目:
来源:第2章《二次函数》中考题集(43):2.3 二次函数的应用(解析版)
题型:解答题
如图抛物线y=
,x轴于A、B两点,交y轴于点C,顶点为D.
(1)求A、B、C的坐标;
(2)把△ABC绕AB的中点M旋转180°,得到四边形AEBC:
①求E点坐标;
②试判断四边形AEBC的形状,并说明理由;
(3)试探索:在直线BC上是否存在一点P,使得△PAD的周长最小?若存在,请求出P点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:
来源:第2章《二次函数》中考题集(43):2.3 二次函数的应用(解析版)
题型:解答题
如图,直线y=-
x+2与x轴交于点C,与y轴交于点B,点A为y轴正半轴上的一点,⊙A经过点B,O,直线BC交⊙A于点D.
(1)求点D的坐标.
(2)以OC为直径作⊙O',连接AD,直线AD与⊙O'相切吗?为什么?
(3)过O,C,D三点作抛物线,在抛物线的对称轴上是否存在一点P,使线段PO与PD之差的值最大?若存在,请求出这个最大值和点P的坐标,若不存在,请说明理由.
查看答案和解析>>