相关习题
 0  127030  127038  127044  127048  127054  127056  127060  127066  127068  127074  127080  127084  127086  127090  127096  127098  127104  127108  127110  127114  127116  127120  127122  127124  127125  127126  127128  127129  127130  127132  127134  127138  127140  127144  127146  127150  127156  127158  127164  127168  127170  127174  127180  127186  127188  127194  127198  127200  127206  127210  127216  127224  366461 

科目: 来源:第2章《二次函数》中考题集(39):2.3 二次函数的应用(解析版) 题型:解答题

在平面直角坐标系中给定以下五个点A(-3,0),B(-1,4),C(0,3),D(),E(1,0).
(1)请从五点中任选三点,求一条以平行于y轴的直线为对称轴的抛物线的解析式;
(2)求该抛物线的顶点坐标和对称轴,并画出草图;
(3)已知点F(-1,)在抛物线的对称轴上,直线y=过点G(-1,)且垂直于对称轴.验证:以E(1,0)为圆心,EF为半径的圆与直线y=相切.请你进一步验证,以抛物线上的点D()为圆心DF为半径的圆也与直线y=相切.由此你能猜想到怎样的结论.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(39):2.3 二次函数的应用(解析版) 题型:解答题

如图,在平面直角坐标系xOy中,△OAB的顶点A的坐标为(10,0),顶点B在第一象限内,且|AB|=3,sin∠OAB=
(1)若点C是点B关于x轴的对称点,求经过O、C、A三点的抛物线的函数表达式;
(2)在(1)中,抛物线上是否存在一点P,使以P、O、C、A为顶点的四边形为梯形?若存在,求出点P的坐标;若不存在,请说明理由;
(3)若将点O、点A分别变换为点Q(-2k,0)、点R(5k,0)(k>1的常数),设过Q、R两点,且以QR的垂直平分线为对称轴的抛物线与y轴的交点为N,其顶点为M,记△QNM的面积为S△QMN,△QNR的面积S△QNR,求S△QMN:S△QNR的值.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(39):2.3 二次函数的应用(解析版) 题型:解答题

如图,平行四边形ABCD中,AB=5,BC=10,BC边上的高AM=4,E为BC边上的一个动点(不与B、C重合).过E作直线AB的垂线,垂足为F.FE与DC的延长线相交于点G,连接DE,DF.
(1)求证:△BEF∽△CEG;
(2)当点E在线段BC上运动时,△BEF和△CEG的周长之间有什么关系?并说明你的理由;
(3)设BE=x,△DEF的面积为y,请你求出y和x之间的函数关系式,并求出当x为何值时,y有最大值,最大值是多少?

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(39):2.3 二次函数的应用(解析版) 题型:解答题

如图,抛物线y=x2+4x与x轴分别相交于点B、O,它的顶点为A,连接AB,把AB所在的直线沿y轴向上平移,使它经过原点O,得到直线l,设P是直线l上有一动点.
(1)求点A的坐标;
(2)以点A、B、O、P为顶点的四边形中,有菱形、等腰梯形、直角梯形,请分别直接写出这些特殊四边形的顶点P的坐标;
(3)设以点A、B、O、P为顶点的四边形的面积为S,点P的横坐标为x,当≤S≤时,求x的取值范围.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(39):2.3 二次函数的应用(解析版) 题型:解答题

如图,已知四边形ABCD是矩形,且MO=MD=4,MC=3.
(1)求直线BM的解析式;
(2)求过A、M、B三点的抛物线的解析式;
(3)在(2)中的抛物线上是否存在点P,使△PMB构成以BM为直角边的直角三角形?若没有,请说明理由;若有,则求出一个符合条件的P点的坐标.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(39):2.3 二次函数的应用(解析版) 题型:解答题

已知,如图,直线l经过A(4,0)和B(0,4)两点,它与抛物线y=ax2在第一象限内相交于点P,又知△AOP的面积为4,求a的值.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(39):2.3 二次函数的应用(解析版) 题型:解答题

如图(1),已知在△ABC中,AB=AC=10,AD为底边BC上的高,且AD=6.将△ACD沿箭头所示的方向平移,得到△A′CD′.如图(2),A′D′交AB于E,A′C分别交AB、AD于G、F.以D′D为直径作⊙O,设BD′的长为x,⊙O的面积为y.
(1)求y与x之间的函数关系式及自变量x的取值范围;
(2)连接EF,求EF与⊙O相切时x的值;
(3)设四边形ED′DF的面积为S,试求S关于x的函数表达式,并求x为何值时,S的值最大,最大值是多少?

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(39):2.3 二次函数的应用(解析版) 题型:解答题

如图所示,已知两点A(-1,0),B(4,0),以AB为直径的半圆P交y轴于点C.
(1)求经过A、B、C三点的抛物线的解析式;
(2)设弦AC的垂直平分线交OC于D,连接AD并延长交半圆P于点E,相等吗?请证明你的结论;
(3)设点M为x轴负半轴上一点,OM=AE,是否存在过点M的直线,使该直线与(1)中所得的抛物线的两个交点到y轴的距离相等?若存在,求出这条直线对应函数的解析式;若不存在.请说明理由.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(39):2.3 二次函数的应用(解析版) 题型:解答题

在平面直角坐标系xOy中,抛物线y=x2+bx+c与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点B的坐标为(3,0),将直线y=kx沿y轴向上平移3个单位长度后恰好经过B,C两点.
(1)求直线BC及抛物线的解析式;
(2)设抛物线的顶点为D,点P在抛物线的对称轴上,且∠APD=∠ACB,求点P的坐标;
(3)连接CD,求∠OCA与∠OCD两角和的度数.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(39):2.3 二次函数的应用(解析版) 题型:解答题

已知直线y=kx+1经过点M(d,-2)和点N(1,2),交y轴于点H,交x轴于点F.
(1)求d的值;
(2)将直线MN绕点M顺时针旋转45°得到直线ME,点Q(3,e)在直线ME上,①证明ME∥x轴;②试求过M、N、Q三点的抛物线的解析式;
(3)在(2)的条件下,连接NQ,作△NMQ的高NB,点A为MN上的一个动点,若BA将△NMQ的面积分为1:2两部分,且射线BA交过M、N、Q三点的抛物线于点C,试求点C的坐标.

查看答案和解析>>

同步练习册答案