相关习题
 0  127035  127043  127049  127053  127059  127061  127065  127071  127073  127079  127085  127089  127091  127095  127101  127103  127109  127113  127115  127119  127121  127125  127127  127129  127130  127131  127133  127134  127135  127137  127139  127143  127145  127149  127151  127155  127161  127163  127169  127173  127175  127179  127185  127191  127193  127199  127203  127205  127211  127215  127221  127229  366461 

科目: 来源:第2章《二次函数》中考题集(36):2.3 二次函数的应用(解析版) 题型:解答题

已知:如图,抛物线y=-x2+bx+c与x轴、y轴分别相交于点A(-1,0)、B(0,3)两点,其顶点为D.
(1)求该抛物线的解析式;
(2)若该抛物线与x轴的另一个交点为E.求四边形ABDE的面积;
(3)△AOB与△BDE是否相似?如果相似,请予以证明;如果不相似,请说明理由.
(注:抛物线y=ax2+bx+c(a≠0)的顶点坐标为

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(36):2.3 二次函数的应用(解析版) 题型:解答题

如图,直线y=x+b经过点B(-,2),且与x轴交于点A,将抛物线y=x2沿x轴作左右平移,记平移后的抛物线为C,其顶点为P.
(1)求∠BAO的度数;
(2)抛物线C与y轴交于点E,与直线AB交于两点,其中一个交点为F,当线段EF∥x轴时,求平移后的抛物线C对应的函数关系式;
(3)在抛物线y=x2平移过程中,将△PAB沿直线AB翻折得到△DAB,点D能否落在抛物线C上?如能,求出此时抛物线C顶点P的坐标;如不能,说明理由.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(36):2.3 二次函数的应用(解析版) 题型:解答题

如图,抛物线L1:y=-x2-2x+3交x轴于A,B两点,交y轴于M点.将抛物线L1向右平移2个单位后得到抛物线L2,L2交x轴于C,D两点.
(1)求抛物线L2对应的函数表达式;
(2)抛物线L1或L2在x轴上方的部分是否存在点N,使以A,C,M,N为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由;
(3)若点P是抛物线L1上的一个动点(P不与点A,B重合),那么点P关于原点的对称点Q是否在抛物线L2上?请说明理由.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(36):2.3 二次函数的应用(解析版) 题型:解答题

锐角△ABC中,BC=6,S△ABC=12,两动点M,N分别在边AB,AC上滑动,且MN∥BC,以MN为边向下作正方形MPQN,设其边长为x,正方形MPQN与△ABC公共部分的面积为y(y>0)
(1)△ABC中边BC上高AD=______;
(2)当x=______时,PQ恰好落在边BC上(如图1);
(3)当PQ在△ABC外部时(如图2),求y关于x的函数关系式(注明x的取值范围),并求出x为何值时y最大,最大值是多少?

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(36):2.3 二次函数的应用(解析版) 题型:解答题

如图,四边形OABC是矩形,OA=4,OC=8,将矩形OABC沿直线AC折叠,使点B落在D处,AD交OC于E.
(1)求OE的长;
(2)求过O,D,C三点抛物线的解析式;
(3)若F为过O,D,C三点抛物线的顶点,一动点P从点A出发,沿射线AB以每秒1个单位长度的速度匀速运动,当运动时间t(秒)为何值时,直线PF把△FAC分成面积之比为1:3的两部分.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(36):2.3 二次函数的应用(解析版) 题型:解答题

已知抛物线y=-(x+2)2+k与x轴交于A、B两点,与y轴交于点C,其中点B在x轴的正半轴上,C点在y轴的正半轴上,线段OB、OC的长(OB<OC)是方程x2-10x+16=0的两个根.
(1)求A、B、C三点的坐标;
(2)在平面直角坐标系内画出抛物线的大致图象并标明顶点坐标;
(3)连AC、BC,若点E是线段AB上的一个动点(与A、B不重合),过E作EF∥AC交BC于F,连CE,设AE=m,△CEF的面积为S,求S与m的函数关系式,并写出自变量m的取值范围;
(4)在(3)的基础上说明S是否存在最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(36):2.3 二次函数的应用(解析版) 题型:解答题

已知抛物线y=ax2+bx+c经过点A(5,0)、B(6,-6)和原点.
(1)求抛物线的函数关系式;
(2)若过点B的直线y=kx+b与抛物线交于点C(2,m),请求出△OBC的面积S的值;
(3)过点C作平行于x轴的直线交y轴于点D,在抛物线对称轴右侧位于直线DC下方的抛物线上,任取一点P,过点P作直线PF平行于y轴交x轴于点F,交直线DC于点E.直线PF与直线DC及两坐标轴围成矩形OFED,是否存在点P,使得△OCD与△CPE相似?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(36):2.3 二次函数的应用(解析版) 题型:解答题

已知:抛物线y=x2+(b-1)x+c经过点P(-1,-2b).
(1)求b+c的值;
(2)若b=3,求这条抛物线的顶点坐标;
(3)若b>3,过点P作直线PA⊥y轴,交y轴于点A,交抛物线于另一点B,且BP=2PA,求这条抛物线所对应的二次函数关系式.(提示:请画示意图思考)

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(36):2.3 二次函数的应用(解析版) 题型:解答题

如图,已知半径为1的⊙O1与x轴交于A,B两点,OM为⊙O1的切线,切点为M,圆心O1的坐标为(2,0),二次函数y=-x2+bx+c的图象经过A,B两点.
(1)求二次函数的解析式;
(2)求切线OM的函数解析式;
(3)线段OM上存在一点P,使得以P,O,A为顶点的三角形与△OO1M相似.请问有几个符合条件的点P并分别求出它们的坐标.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(36):2.3 二次函数的应用(解析版) 题型:解答题

如图1,抛物线y=ax2-3ax+b经过A(-1,0),C(3,2)两点,与y轴交于点D,与x轴交于另一点B.
(1)求此抛物线的解析式;
(2)若直线y=kx-1(k≠0)将四边形ABCD面积二等分,求k的值;
(3)如图2,过点E(1,-1)作EF⊥x轴于点F,将△AEF绕平面内某点旋转180°后得△MNQ(点M,N,Q分别与点A,E,F对应),使点M,N在抛物线上,求点M,N的坐标.

查看答案和解析>>

同步练习册答案