相关习题
 0  127044  127052  127058  127062  127068  127070  127074  127080  127082  127088  127094  127098  127100  127104  127110  127112  127118  127122  127124  127128  127130  127134  127136  127138  127139  127140  127142  127143  127144  127146  127148  127152  127154  127158  127160  127164  127170  127172  127178  127182  127184  127188  127194  127200  127202  127208  127212  127214  127220  127224  127230  127238  366461 

科目: 来源:第2章《二次函数》中考题集(31):2.3 二次函数的应用(解析版) 题型:解答题

在平面直角坐标系xOy中,抛物线y=ax2+bx+c与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点A的坐标为(-3,0),若将经过A、C两点的直线y=kx+b沿y轴向下平移3个单位后恰好经过原点,且抛物线的对称轴是直线x=-2.
(1)求直线AC及抛物线的函数表达式;
(2)如果P是线段AC上一点,设△ABP、△BPC的面积分别为S△ABP、S△BPC,且S△ABP:S△BPC=2:3,求点P的坐标;
(3)设⊙Q的半径为1,圆心Q在抛物线上运动,则在运动过程中是否存在⊙Q与坐标轴相切的情况?若存在,求出圆心Q的坐标;若不存在,请说明理由.并探究:若设⊙Q的半径为r,圆心Q在抛物线上运动,则当r取何值时,⊙Q与两坐轴同时相切.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(31):2.3 二次函数的应用(解析版) 题型:解答题

如图(1),抛物线y=x2+x-4与y轴交于点A,E(0,b)为y轴上一动点,过点E的直线y=x+b与抛物线交于点B、C.
(1)求点A的坐标;
(2)当b=0时(如图(2)),△ABE与△ACE的面积大小关系如何?当b>-4时,上述关系还成立吗,为什么?
(3)是否存在这样的b,使得△BOC是以BC为斜边的直角三角形?若存在,求出b;若不存在,说明理由.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(31):2.3 二次函数的应用(解析版) 题型:解答题

如图,已知抛物线y=x2+bx+c与x轴交于点A(-4,0)和B(1,0)两点,与y轴交于C点.
(1)求此抛物线的解析式;
(2)设E是线段AB上的动点,作EF∥AC交BC于F,连接CE,当△CEF的面积是△BEF面积的2倍时,求E点的坐标;
(3)若P为抛物线上A、C两点间的一个动点,过P作y轴的平行线,交AC于Q,当P点运动到什么位置时,线段PQ的值最大,并求此时P点的坐标.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(31):2.3 二次函数的应用(解析版) 题型:解答题

已知:二次函数y=ax2+bx-2的图象经过点(1,0),一次函数图象经过原点和点(1,-b),其中a>b>0且a、b为实数.
(1)求一次函数的表达式(用含b的式子表示);
(2)试说明:这两个函数的图象交于不同的两点;
(3)设(2)中的两个交点的横坐标分别为x1、x2,求|x1-x2|的范围.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(31):2.3 二次函数的应用(解析版) 题型:解答题

如图,在平面直角坐标系中,矩形OABC的两边分别在x轴和y轴上,OA=cm,OC=8cm,现有两动点P、Q分别从O、C同时出发,P在线段OA上沿OA方向以每秒cm的速度匀速运动,Q在线段CO上沿CO方向以每秒1cm的速度匀速运动、设运动时间为t秒.
(1)用t的式子表示△OPQ的面积S;
(2)求证:四边形OPBQ的面积是一个定值,并求出这个定值;
(3)当△OPQ与△PAB和△QPB相似时,抛物线y=x2+bx+c经过B、P两点,过线段BP上一动点M作y轴的平行线交抛物线于N,当线段MN的长取最大值时,求直线MN把四边形OPBQ分成两部分的面积之比.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(31):2.3 二次函数的应用(解析版) 题型:解答题

如图1,在平面直角坐标系中,等腰直角△AOB的斜边OB在x轴上,顶点A的坐标为(3,3),AD为斜边上的高,抛物线y=ax2+2x与直线y=x交于点O,C,点C的横坐标为6,点P在x轴的正半轴上,过点P作PE∥y轴.交射线OA于点E.设点P的横坐标为m,以A,B,D,E为顶点的四边形的面积为S.
(1)求OA所在直线的解析式.
(2)求a的值.
(3)当m≠3时,求S与m的函数关系式.
(4)如图2,设直线PE交射线OC于点R,交抛物线于点Q,以RQ为一边,在RQ的右侧作矩形RQMN,其中RN=.直接写出矩形RQMN与△AOB重叠部分为轴对称图形时m的取值范围.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(31):2.3 二次函数的应用(解析版) 题型:解答题

如图,四边形ABCD是菱形,点D的坐标是(0,),以点C为顶点的抛物线y=ax2+bx+c恰好经过x轴上A、B两点.
(1)求A、B、C三点的坐标;
(2)求过A、B、C三点的抛物线的解析式;
(3)若将上述抛物线沿其对称轴向上平移后恰好过D点,求平移后抛物线的解析式,并指出平移了多少个单位.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(31):2.3 二次函数的应用(解析版) 题型:解答题

如图,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=5,OC=3.
(1)在AB边上取一点D,将纸片沿OD翻折,使点A落在BC边上的点E处,求点D,E的坐标;
(2)若过点D,E的抛物线与x轴相交于点F(-5,0),求抛物线的解析式和对称轴方程;
(3)若(2)中的抛物线与y轴交于点H,在抛物线上是否存在点P,使△PFH的内心在坐标轴上?若存在,求出点P的坐标,若不存在,请说明理由.
(4)若(2)中的抛物线与y轴相交于点H,点Q在线段OD上移动,作直线HQ,当点Q移动到什么位置时,O,D两点到直线HQ的距离之和最大?请直接写出此时点Q的坐标及直线HQ的解析式.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(31):2.3 二次函数的应用(解析版) 题型:解答题

在平面直角坐标系xOy中,抛物线y=-x2+x+m2-3m+2与x轴的交点分别为原点O和点A,点B(2,n)在这条抛物线上.
(1)求点B的坐标;
(2)点P在线段OA上,从O点出发向点A运动,过P点作x轴的垂线,与直线OB交于点E.延长PE到点D.使得ED=PE.以PD为斜边,在PD右侧作等腰直角三角形PCD(当P点运动时,C点、D点也随之运动)j当等腰直角三角形PCD的顶点C落在此抛物线上时,求OP的长;k若P点从O点出发向A点作匀速运动,速度为每秒1个单位,同时线段OA上另一点Q从A点出发向O点作匀速运动,速度为每秒2个单位(当Q点到达O点时停止运动,P点也同时停止运动).过Q点作x轴的垂线,与直线AB交于点F.延长QF到点M,使得FM=QF,以QM为斜边,在QM的左侧作等腰直角三角形QMN(当Q点运动时,M点,N点也随之运动).若P点运动到t秒时,两个等腰直角三角形分别有一条边恰好落在同一条直线上,求此刻t的值.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(31):2.3 二次函数的应用(解析版) 题型:解答题

已知二次函数y=ax2+bx+c(a≠0)的图象经过点A(1,0),B(2,0),C(0,-2),直线x=m(m>2)与x轴交于点D.
(1)求二次函数的解析式;
(2)在直线x=m(m>2)上有一点E(点E在第四象限),使得E、D、B为顶点的三角形与以A、O、C为顶点的三角形相似,求E点坐标(用含m的代数式表示);
(3)在(2)成立的条件下,抛物线上是否存在一点F,使得四边形ABEF为平行四边形?若存在,请求出m的值及四边形ABEF的面积;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案