相关习题
 0  127057  127065  127071  127075  127081  127083  127087  127093  127095  127101  127107  127111  127113  127117  127123  127125  127131  127135  127137  127141  127143  127147  127149  127151  127152  127153  127155  127156  127157  127159  127161  127165  127167  127171  127173  127177  127183  127185  127191  127195  127197  127201  127207  127213  127215  127221  127225  127227  127233  127237  127243  127251  366461 

科目: 来源:第2章《二次函数》中考题集(27):2.3 二次函数的应用(解析版) 题型:解答题

某校八年级(1)班共有学生50人,据统计原来每人每年用于购买饮料的平均支出是a元.经测算和市场调查,若该班学生集体改饮某品牌的桶装纯净水,则年总费用由两部分组成,一部分是购买纯净水的费用,另一部分是其它费用780元,其中,纯净水的销售价x(元/桶)与年购买总量y(桶)之间满足如图所示关系.
(1)求y与x的函数关系式;
(2)若该班每年需要纯净水380桶,且a为120时,请你根据提供的信息分析一下:该班学生集体改饮桶装纯净水与个人买饮料,哪一种花钱更少?
(3)当a至少为多少时,该班学生集体改饮桶装纯净水一定合算从计算结果看,你有何感想?(不超过30字)

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(27):2.3 二次函数的应用(解析版) 题型:解答题

某公司2005年1-3月的月利润y(万元)与月份x之间的关系如图所示.图中的折线可近似看作是抛物线的一部分.
(1)根据图象提供的信息,求出过A、B、C三点的二次函数关系式;
(2)公司开展技术革新活动,定下目标:今年6月份的利润仍以图中抛物线的上升趋势上升.6月份公司预计将达到多少万元?
(3)如果公司1月份的利润率为13%,以后逐月增加1个百分点.已知6月上旬平均每日实际销售收入为3.6万元,照此推算6月份公司的利润是否会超过(2)中所确定的目标?
(成本总价=利润利润率,销售收入=成本总价+利润)

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(27):2.3 二次函数的应用(解析版) 题型:解答题

有一个抛物线形的拱形隧道,隧道的最大高度为6m,跨度为8m,把它放在如图所示的平面直角坐标系中.
(1)求这条抛物线所对应的函数关系式;
(2)若要在隧道壁上点P(如图)安装一盏照明灯,灯离地面高4.5m.求灯与点B的距离.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(27):2.3 二次函数的应用(解析版) 题型:解答题

东海体育用品商场为了推销某一运动服,先做了市场调查,得到数据如下表:
卖出价格x(元/件)50515253
销售量p(件)500490480470
(1)以x作为点的横坐标,p作为纵坐标,把表中的数据,在图中的直角坐标系中描出相应的点,观察连接各点所得的图形,判断p与x的函数关系式;
(2)如果这种运动服的买入价为每件40元,试求销售利润y(元)与卖出价格x(元/件)的函数关系式(销售利润=销售收入-买入支出);
(3)在(2)的条件下,当卖出价为多少时,能获得最大利润?

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(27):2.3 二次函数的应用(解析版) 题型:解答题

如图,一张边长为16cm的正方形硬纸板,把它的四个角都剪去一个边长为xcm的小正方形,然后把它折成一个无盖的长方体,设长方体的容积为Vcm3,请回答下列问题:
(1)若用含有X的代数式表示V,则V=______;
(2)完成下表:

(3)观察上表,容积V的值是否随x值得增大而增大?当x取什么值时,容积V的值最大?

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(27):2.3 二次函数的应用(解析版) 题型:解答题

用总长为32m的篱笆墙围成一个扇形的花园.
(1)试写出扇形花园的面积y(m2)与半径x(m)之间的函数关系式和自变量x的取值范围;
(2)用描点法作出函数的图象;
(3)当扇形花园半径为多少时,花园面积最大?最大面积是多少?此时这个扇形的圆心角是多大(精确到0.1度)?
(4)请回答:如果同样用32m的篱笆围成一个面积最大的矩形花园,这个花园的面积是多少?对比上面的结论,你有什么发现?

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(27):2.3 二次函数的应用(解析版) 题型:解答题

某校的围墙上端由一段段相同的凹曲拱形栅栏组成,如图所示,其拱形图形为抛物线的一部分,栅栏的跨径AB间,按相同的间距0.2米用5根立柱加固,拱高OC为0.6米.
(1)以O为原点,OC所在的直线为y轴建立平面直角坐标系,请根据以上的数据,抛物线y=ax2中a=______;
(2)计算一段栅栏所需立柱的总长度为______米.(精确到0.1米)

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(27):2.3 二次函数的应用(解析版) 题型:解答题

有一种计算机控制的线切割机床,它可以自动切割只有直线和抛物线组成的零件,工作时只要先确定零件上各点的坐标及线段与抛物线的关系式作为程序输入计算机即可.今有如图所示的零件需按A?B?C?D?A的路径切割,请按下表将程序编完整.
线段或抛物线 起始坐标 关系式 终点坐标 
 抛物线APB   
 线段BC (1,0) x=1(1,-1)
 线段CD (1,-1)  
 线段AD   (1,0)


查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(27):2.3 二次函数的应用(解析版) 题型:解答题

小明代表班级参加校运会的铅球项目,他想:“怎样才能将铅球推得更远呢”,于是找来小刚做了如下的探索:小明手挚铅球在控制每次推出时用力相同的条件下,分别沿与水平线成30°、45°、60°方向推了三次.铅球推出后沿抛物线形运动.如图,小明推铅球时的出手点距地面2m,以铅球出手点所在竖直方向为y轴、地平线为x轴建立直角坐标系,分别得到的有关数据如下表:
铅球的方向与水平线的夹角304560
铅球运行所得到的抛物线解析式 y1=-0.06(x-3)2+2.5 y2=
______(x-4)2+3.6
 y3=-0.22(x-3)2+4
估测铅球在最高点的坐标 P1(3,2.5) P2(4,3.6) P3(3,4)
铅球落点到小明站立处的水平距离 9.5m 

______m
 7.3m
(1)请你求出表格中两横线上的数据,写出计算过程,并将结果填入表格中的横线上;
(2)请根据以上数据,对如何将铅球推得更远提出你的建议.

查看答案和解析>>

科目: 来源:第2章《二次函数》中考题集(27):2.3 二次函数的应用(解析版) 题型:解答题

如图,已知一抛物线形大门,其地面宽度AB=18m.一同学站在门内,在离门脚B点1m远的D处,垂直地面立起一根1.7m长的木杆,其顶端恰好顶在抛物线形门上C处.根据这些条件,请你求出该大门的高h.

查看答案和解析>>

同步练习册答案