相关习题
 0  127419  127427  127433  127437  127443  127445  127449  127455  127457  127463  127469  127473  127475  127479  127485  127487  127493  127497  127499  127503  127505  127509  127511  127513  127514  127515  127517  127518  127519  127521  127523  127527  127529  127533  127535  127539  127545  127547  127553  127557  127559  127563  127569  127575  127577  127583  127587  127589  127595  127599  127605  127613  366461 

科目: 来源:第6章《二次函数》常考题集(24):6.4 二次函数的应用(解析版) 题型:解答题

如图,已知正方形ABCD与正方形EFGH的边长分别是,它们的中心O1,O2都在直线l上,AD∥l,EG在直线l上,l与DC相交于点M,ME=7-2,当正方形EFGH沿直线l以每秒1个单位的速度向左平移时,正方形ABCD也绕O1以每秒45°顺时针方向开始旋转,在运动变化过程中,它们的形状和大小都不改变.
(1)在开始运动前,O1O2=______;
(2)当两个正方形按照各自的运动方式同时运动3秒时,正方形ABCD停止旋转,这时AE=______,O1O2=______;
(3)当正方形ABCD停止旋转后,正方形EFGH继续向左平移的时间为x秒,两正方形重叠部分的面积为y,求y与x之间的函数表达式.

查看答案和解析>>

科目: 来源:第6章《二次函数》常考题集(24):6.4 二次函数的应用(解析版) 题型:解答题

已知抛物线y=x2-2x+m与x轴交于点A(x1,0)、B(x2,0)(x2>x1),
(1)若点P(-1,2)在抛物线y=x2-2x+m上,求m的值;
(2)若抛物线y=ax2+bx+m与抛物线y=x2-2x+m关于y轴对称,点Q1(-2,q1)、Q2(-3,q2)都在抛物线y=ax2+bx+m上,则q1、q2的大小关系是______;
(请将结论写在横线上,不要写解答过程);(友情提示:结论要填在答题卡相应的位置上)
(3)设抛物线y=x2-2x+m的顶点为M,若△AMB是直角三角形,求m的值.

查看答案和解析>>

科目: 来源:第6章《二次函数》常考题集(24):6.4 二次函数的应用(解析版) 题型:解答题

如图1,在平面直角坐标系中,有一张矩形纸片OABC,已知O(0,0),A(4,0),C(0,3),点P是OA边上的动点(与点O、A不重合).现将△PAB沿PB翻折,得到△PDB;再在OC边上选取适当的点E,将△POE沿PE翻折,得到△PFE,并使直线PD、PF重合.
(1)设P(x,0),E(0,y),求y关于x的函数关系式,并求y的最大值;
(2)如图2,若翻折后点D落在BC边上,求过点P、B、E的抛物线的函数关系式;
(3)在(2)的情况下,在该抛物线上是否存在点Q,使△PEQ是以PE为直角边的直角三角形?若不存在,说明理由;若存在,求出点Q的坐标.

查看答案和解析>>

科目: 来源:第6章《二次函数》常考题集(24):6.4 二次函数的应用(解析版) 题型:解答题

如图1,在平面直角坐标系中,已知点A(0,4),点B在x正半轴上,且∠ABO=30度.动点P在线段AB上从点A向点B以每秒个单位的速度运动,设运动时间为t秒.在x轴上取两点M,N作等边△PMN.
(1)求直线AB的解析式;
(2)求等边△PMN的边长(用t的代数式表示),并求出当等边△PMN的顶点M运动到与原点O重合时t的值;
(3)如果取OB的中点D,以OD为边在Rt△AOB内部作如图2所示的矩形ODCE,点C在线段AB上.设等边△PMN和矩形ODCE重叠部分的面积为S,请求出当0≤t≤2秒时S与t的函数关系式,并求出S的最大值.

查看答案和解析>>

科目: 来源:第6章《二次函数》常考题集(24):6.4 二次函数的应用(解析版) 题型:解答题

设抛物线y=ax2+bx-2与x轴交于两个不同的点A(-1,0)、B(m,0),与y轴交于点C,且∠ACB=90度.
(1)求m的值和抛物线的解析式;
(2)已知点D(1,n)在抛物线上,过点A的直线y=x+1交抛物线于另一点E.若点P在x轴上,以点P、B、D为顶点的三角形与△AEB相似,求点P的坐标;
(3)在(2)的条件下,△BDP的外接圆半径等于______

查看答案和解析>>

科目: 来源:第6章《二次函数》常考题集(24):6.4 二次函数的应用(解析版) 题型:解答题

已知:如图,在平面直角坐标系中,四边形ABCO是菱形,且∠AOC=60°,点B的坐标是(0,8),点P从点C开始以每秒1个单位长度的速度在线段CB上向点B移动,同时,点Q从点O开始以每秒a(1≤a≤3)个单位长度的速度沿射线OA方向移动设t(0<t≤8)秒后,直线PQ交OB于点D.
(1)求∠AOB的度数及线段OA的长;
(2)求经过A,B,C三点的抛物线的解析式;
(3)当a=3,OD=时,求t的值及此时直线PQ的解析式;
(4)当a为何值时,以O,Q,D为顶点的三角形与△OAB相似?当a为何值时,以O,Q,D为顶点的三角形与△OAB不相似?请给出你的结论,并加以证明.

查看答案和解析>>

科目: 来源:第6章《二次函数》常考题集(24):6.4 二次函数的应用(解析版) 题型:解答题

如图,对称轴为直线x=的抛物线经过点A(6,0)和B(0,4).
(1)求抛物线解析式及顶点坐标;
(2)设点E(x,y)是抛物线上一动点,且位于第四象限,四边形OEAF是以OA为对角线的平行四边形,求平行四边形OEAF的面积S与x之间的函数关系式,并写出自变量x的取值范围;
①当平行四边形OEAF的面积为24时,请判断平行四边形OEAF是否为菱形?
②是否存在点E,使平行四边形OEAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:第6章《二次函数》常考题集(24):6.4 二次函数的应用(解析版) 题型:解答题

如图,四边形OABC为直角梯形,A(4,0),B(3,4),C(0,4).点M从O出发以每秒2个单位长度的速度向A运动;点N从B同时出发,以每秒1个单位长度的速度向C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP垂直x轴于点P,连接AC交NP于Q,连接MQ.
(1)点______(填M或N)能到达终点;
(2)求△AQM的面积S与运动时间t的函数关系式,并写出自变量t的取值范围,当t为何值时,S的值最大;
(3)是否存在点M,使得△AQM为直角三角形?若存在,求出点M的坐标;若不存在,说明理由.

查看答案和解析>>

科目: 来源:第6章《二次函数》常考题集(24):6.4 二次函数的应用(解析版) 题型:解答题

如图,已知二次函数y=ax2-4x+c的图象经过点A和点B.
(1)求该二次函数的表达式;
(2)写出该抛物线的对称轴及顶点坐标;
(3)点P(m,m)与点Q均在该函数图象上(其中m>0),且这两点关于抛物线的对称轴对称,求m的值及点Q到x轴的距离.

查看答案和解析>>

科目: 来源:第6章《二次函数》常考题集(24):6.4 二次函数的应用(解析版) 题型:解答题

在直角梯形ABCD中,∠C=90°,高CD=6cm(如图1).动点P,Q同时从点B出发,点P沿BA,AD,DC运动到点C停止,点Q沿BC运动到C点停止.两点运动时的速度都是1cm/s.而当点P到达点A时,点Q正好到达点C.设P,Q同时从点B出发,经过的时间为t(s)时,△BPQ的面积为y(cm2)(如图2).分别以x,y为横、纵坐标建立直角坐标系,已知点P在AD边上从A到D运动时,y与t的函数图象是图3中的线段MN.
(1)分别求出梯形中BA,AD的长度;
(2)写出图3中M,N两点的坐标;
(3)分别写出点P在BA边上和DC边上运动时,y与t的函数关系式(注明自变量的取值范围),并在答题卷的图4(放大了的图3)中补全整个运动中y关于t的函数关系的大致图象.

查看答案和解析>>

同步练习册答案