相关习题
 0  127508  127516  127522  127526  127532  127534  127538  127544  127546  127552  127558  127562  127564  127568  127574  127576  127582  127586  127588  127592  127594  127598  127600  127602  127603  127604  127606  127607  127608  127610  127612  127616  127618  127622  127624  127628  127634  127636  127642  127646  127648  127652  127658  127664  127666  127672  127676  127678  127684  127688  127694  127702  366461 

科目: 来源:第6章《二次函数》中考题集(36):6.4 二次函数的应用(解析版) 题型:解答题

如图,Rt△ABC的顶点坐标分别为A(0,),B(),C(1,0),∠ABC=90°,BC与y轴的交点为D,D点坐标为(0,),以点D为顶点y轴为对称轴的抛物线过点B.
(1)求该抛物线的解析式.
(2)将△ABC沿AC折叠后得到点B的对应点B',求证:四边形AOCB'是矩形,并判断点B'是否在(1)的抛物线上.
(3)延长BA交抛物线于点E,在线段BE上取一点P,过点P作x轴的垂线,交抛物线于点F,是否存在这样的点P,使四边形PADF是平行四边形?若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目: 来源:第6章《二次函数》中考题集(36):6.4 二次函数的应用(解析版) 题型:解答题

在平面直角坐标系xOy中,已知抛物线y=a(x+1)2+c(a>0)与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,其顶点为M,若直线MC的函数表达式为y=kx-3,与x轴的交点为N,且cos∠BCO=
(1)求此抛物线的函数表达式;
(2)在此抛物线上是否存在异于点C的点P,使以N、P、C为顶点的三角形是以NC为一条直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由;
(3)过点A作x轴的垂线,交直线MC于点Q.若将抛物线沿其对称轴上下平移,使抛物线与线段NQ总有公共点,则抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度?

查看答案和解析>>

科目: 来源:第6章《二次函数》中考题集(36):6.4 二次函数的应用(解析版) 题型:解答题

如图①,点A′,B′的坐标分别为(2,0)和(0,-4),将△A′B′O绕点O按逆时针方向旋转90°后得△ABO,点A′的对应点是点A,点B′的对应点是点B.
(1)写出A,B两点的坐标,并求出直线AB的解析式;
(2)将△ABO沿着垂直于x轴的线段CD折叠,(点C在x轴上,点D在AB上,点D不与A,B重合)如图②,使点B落在x轴上,点B的对应点为点E.设点C的坐标为(x,0),△CDE与△ABO重叠部分的面积为S.
①试求出S与x之间的函数关系式(包括自变量x的取值范围);
②当x为何值时,S的面积最大,最大值是多少?
③是否存在这样的点C,使得△ADE为直角三角形?若存在,直接写出点C的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:第6章《二次函数》中考题集(36):6.4 二次函数的应用(解析版) 题型:解答题

如图①,在梯形ABCD中,CD∥AB,∠ABC=90°,∠DAB=60°,AD=2,CD=4.另有一直角三角形EFG,∠EFG=90°,点G与点D重合,点E与点A重合,点F在AB上,让△EFG的边EF在AB上,点G在DC上,以每秒1个单位的速度沿着AB方向向右运动,如图②,点F与点B重合时停止运动,设运动时间为t秒.
(1)在上述运动过程中,请分别写出当四边形FBCG为正方形和四边形AEGD为平行四边形时对应时刻t的值或范围;
(2)以点A为原点,以AB所在直线为x轴,过点A垂直于AB的直线为y轴,建立如图③所示的坐标系.求过A,D,C三点的抛物线的解析式;
(3)探究:延长EG交(2)中的抛物线于点Q,是否存在这样的时刻t使得△ABQ的面积与梯形ABCD的面积相等?若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:第6章《二次函数》中考题集(36):6.4 二次函数的应用(解析版) 题型:解答题

已知二次函数过点A(0,-2),B(-1,0),C(
(1)求此二次函数的解析式;
(2)判断点M(1,)是否在直线AC上;
(3)过点M(1,)作一条直线l与二次函数的图象交于E、F两点(不同于A,B,C三点),请自已给出E点的坐标,并证明△BEF是直角三角形.

查看答案和解析>>

科目: 来源:第6章《二次函数》中考题集(36):6.4 二次函数的应用(解析版) 题型:解答题

如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴相交于点C.连接AC、BC,A、C两点的坐标分别为A(-3,0)、C(0,),且当x=-4和x=2时二次函数的函数值y相等.
(1)求实数a,b,c的值;
(2)若点M、N同时从B点出发,均以每秒1个单位长度的速度分别沿BA、BC边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为t秒时,连接MN,将△BMN沿MN翻折,B点恰好落在AC边上的P处,求t的值及点P的坐标;
(3)在(2)的条件下,二次函数图象的对称轴上是否存在点Q,使得以B,N,Q为项点的三角形与△ABC相似?如果存在,请求出点Q的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目: 来源:第6章《二次函数》中考题集(36):6.4 二次函数的应用(解析版) 题型:解答题

如图,抛物线y=ax2-x-与x轴正半轴交于点A(3,0),以OA为边在x轴上方作正方形OABC,延长CB交抛物线于点D,再以BD为边向上作正方形BDEF.
(1)求a的值;
(2)求点F的坐标.

查看答案和解析>>

科目: 来源:第6章《二次函数》中考题集(36):6.4 二次函数的应用(解析版) 题型:解答题

如图,直线y=-x+6分别与x轴、y轴交于A、B两点;直线y=x与AB交于点C,与过点A且平行于y轴的直线交于点D.点E从点A出发,以每秒1个单位的速度沿x轴向左运动.过点E作x轴的垂线,分别交直线AB、OD于P、Q两点,以PQ为边向右作正方形PQMN.设正方形PQMN与△ACD重叠部分(阴影部分)的面积为S(平方单位),点E的运动时间为t(秒).
(1)求点C的坐标.
(2)当0<t<5时,求S与t之间的函数关系式.
(3)求(2)中S的最大值.
(4)当t>0时,直接写出点(4,)在正方形PQMN内部时t的取值范围.
参考公式:二次函数y=ax2+bx+c图象的顶点坐标为().

查看答案和解析>>

科目: 来源:第6章《二次函数》中考题集(36):6.4 二次函数的应用(解析版) 题型:解答题

如图①,某产品标志的截面图形由一个等腰梯形和抛物线的一部分组成,在等腰梯形ABCD中,AB∥DC,AB=20cm,DC=30CM,∠ADC=45度.对于抛物线部分,其顶点为CD的中点O,且过A、B两点,开口终端的连线MN平行且等于DC.
(1)如图①所示,在以点O为原点,直线OC为x轴的坐标系内,点C的坐标为(15,0),试求A、B两点的坐标;
(2)求标志的高度(即标志的最高点到梯形下底所在直线的距离);
(3)现根据实际情况,需在标志截面图形的梯形部分的外围均匀镀上一层厚度为3cm的保护膜,如图②,请在图中补充完整镀膜部分的示意图,并求出镀膜的外围周长.

查看答案和解析>>

科目: 来源:第6章《二次函数》中考题集(36):6.4 二次函数的应用(解析版) 题型:解答题

如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)经过A(-1,0),B(3,0),C(0,3)三点,其顶点为D,连接BD,点P是线段BD上一个动点(不与B、D重合),过点P作y轴的垂线,垂足为E,连接BE.
(1)求抛物线的解析式,并写出顶点D的坐标;
(2)如果P点的坐标为(x,y),△PBE的面积为s,求s与x的函数关系式,写出自变量x的取值范围,并求出s的最大值;
(3)在(2)的条件下,当s取得最大值时,过点P作x的垂线,垂足为F,连接EF,把△PEF沿直线EF折叠,点P的对应点为P′,请直接写出P′点坐标,并判断点P′是否在该抛物线上.

查看答案和解析>>

同步练习册答案