相关习题
 0  127522  127530  127536  127540  127546  127548  127552  127558  127560  127566  127572  127576  127578  127582  127588  127590  127596  127600  127602  127606  127608  127612  127614  127616  127617  127618  127620  127621  127622  127624  127626  127630  127632  127636  127638  127642  127648  127650  127656  127660  127662  127666  127672  127678  127680  127686  127690  127692  127698  127702  127708  127716  366461 

科目: 来源:第6章《二次函数》中考题集(30):6.4 二次函数的应用(解析版) 题型:解答题

如图,在直角坐标系xOy中,正方形OCBA的顶点A,C分别在y轴,x轴上,点B坐标为(6,6),抛物线y=ax2+bx+c经过点A,B两点,且3a-b=-1.
(1)求a,b,c的值;
(2)如果动点E,F同时分别从点A,点B出发,分别沿A→B,B→C运动,速度都是每秒1个单位长度,当点E到达终点B时,点E,F随之停止运动,设运动时间为t秒,△EBF的面积为S.
①试求出S与t之间的函数关系式,并求出S的最大值;
②当S取得最大值时,在抛物线上是否存在点R,使得以E,B,R,F为顶点的四边形是平行四边形?如果存在,求出点R的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目: 来源:第6章《二次函数》中考题集(30):6.4 二次函数的应用(解析版) 题型:解答题

已知二次函数y1=x2-2x-3及一次函数y2=x+m.
(1)求该二次函数图象的顶点坐标以及它与x轴的交点坐标;
(2)将该二次函数图象在x轴下方的部分沿x轴翻折到x轴上方,图象的其余部分不变,得到一个新图象.请你在图中画出这个新图象,并求出新图象与直线y2=x+m有三个不同公共点时m的值;
(3)当0≤x≤2时,函数y=y1+y2+(m-2)x+3的图象与x轴有两个不同公共点,求m的取值范围.

查看答案和解析>>

科目: 来源:第6章《二次函数》中考题集(30):6.4 二次函数的应用(解析版) 题型:解答题

在平面直角坐标系中,点A、B的坐标分别为(10,0),(2,4).
(1)若点C是点B关于x轴的对称点,求经过O、C、A三点的抛物线的解析式;
(2)若P为抛物线上异于C的点,且△OAP是直角三角形,请直接写出点P的坐标;
(3)若抛物线顶点为D,对称轴交x轴于点M,探究:抛物线对称轴上是否存在异于D的点Q,使△AQD是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:第6章《二次函数》中考题集(30):6.4 二次函数的应用(解析版) 题型:解答题

如图:二次函数y=-x2+ax+b的图象与x轴交于A(-,0),B(2,0)两点,且与y轴交于点C.
(1)求该抛物线的解析式,并判断△ABC的形状;
(2)在x轴上方的抛物线上有一点D,且A、C、D、B四点为顶点的四边形是等腰梯形,请直接写出D点的坐标;
(3)在此抛物线上是否存在点P,使得以A、C、B、P四点为顶点的四边形是直角梯形?若存在,求出P点的坐标;若不存在,说明理由.

查看答案和解析>>

科目: 来源:第6章《二次函数》中考题集(30):6.4 二次函数的应用(解析版) 题型:解答题

如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(-1,0)、C(0,-3)两点,与x轴交于另一点B.
(1)求这条抛物线所对应的函数关系式;
(2)在抛物线的对称轴x=1上求一点M,使点M到点A的距离与到点C的距离之和最小,并求出此时点M的坐标;
(3)设点P为抛物线的对称轴x=1上的一动点,求使∠PCB=90°的点P的坐标.

查看答案和解析>>

科目: 来源:第6章《二次函数》中考题集(30):6.4 二次函数的应用(解析版) 题型:解答题

已知:抛物线y=ax2+bx+c(a≠0),顶点C(1,-4),与x轴交于A、B两点,A(-1,0).
(1)求这条抛物线的解析式;
(2)如图,以AB为直径作圆,与抛物线交于点D,与抛物线的对称轴交于点E,依次连接A、D、B、E,点Q为线段AB上一个动点(Q与A、B两点不重合),过点Q作QF⊥AE于F,QG⊥DB于G,请判断是否为定值?若是,请求出此定值;若不是,请说明理由;
(3)在(2)的条件下,若点H是线段EQ上一点,过点H作MN⊥EQ,MN分别与边AE、BE相交于M、N,(M与A、E不重合,N与E、B不重合),请判断是否成立?若成立,请给出证明;若不成立,请说明理由.

查看答案和解析>>

科目: 来源:第6章《二次函数》中考题集(30):6.4 二次函数的应用(解析版) 题型:解答题

△ABC中,∠A=∠B=30°,AB=2,把△ABC放在平面直角坐标系中,使AB的中点位于坐标原点O(如图),△ABC可以绕点O作任意角度的旋转.
(1)当点B在第一象限,纵坐标是时,求点B的横坐标;
(2)如果抛物线y=ax2+bx+c(a≠0)的对称轴经过点C,请你探究:
①当a=,b=-,c=-时,A,B两点是否都在这条抛物线上?并说明理由;
②设b=-2am,是否存在这样的m的值,使A,B两点不可能同时在这条抛物线上?若存在,直接写出m的值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:第6章《二次函数》中考题集(30):6.4 二次函数的应用(解析版) 题型:解答题

如图,在平面直角示系中,A、B两点的坐标分别是A(-1,0)、B(4,0),点C在y轴的负半轴上,且∠ACB=90°
(1)求点C的坐标;
(2)求经过A、B、C三点的抛物线的解析式;
(3)直线l⊥x轴,若直线l由点A开始沿x轴正方向以每秒1个单位的速度匀速向右平移,设运动时间为t(0≤t≤5)秒,运动过程中直线l在△ABC中所扫过的面积为S,求S与t的函数关系式.

查看答案和解析>>

科目: 来源:第6章《二次函数》中考题集(30):6.4 二次函数的应用(解析版) 题型:解答题

如图所示,抛物线y=x2+bx+c与x轴交于A,B两点,与y轴交于点C(0,2),连接AC,若tan∠OAC=2.
(1)求抛物线对应的二次函数的解析式;
(2)在抛物线的对称轴l上是否存在点P,使∠APC=90°?若存在,求出点P的坐标;若不存在,请说明理由;
(3)如图所示,连接BC,M是线段BC上(不与B、C重合)的一个动点,过点M作直线l′∥l,交抛物线于点N,连接CN、BN,设点M的横坐标为t.当t为何值时,△BCN的面积最大?最大面积为多少?

查看答案和解析>>

科目: 来源:第6章《二次函数》中考题集(30):6.4 二次函数的应用(解析版) 题型:解答题

如图1,已知矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3;抛物线y=-x2+bx+c经过坐标原点O和x轴上另一点E(4,0)
(1)当x取何值时,该抛物线取最大值?该抛物线的最大值是多少?
(2)将矩形ABCD以每秒1个单位长度的速度从图1所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向B匀速移动.设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图2所示).
①当t=时,判断点P是否在直线ME上,并说明理由;
②以P、N、C、D为顶点的多边形面积是否可能为5?若有可能,求出此时N点的坐标;若无可能,请说明理由.

查看答案和解析>>

同步练习册答案