相关习题
 0  127528  127536  127542  127546  127552  127554  127558  127564  127566  127572  127578  127582  127584  127588  127594  127596  127602  127606  127608  127612  127614  127618  127620  127622  127623  127624  127626  127627  127628  127630  127632  127636  127638  127642  127644  127648  127654  127656  127662  127666  127668  127672  127678  127684  127686  127692  127696  127698  127704  127708  127714  127722  366461 

科目: 来源:第6章《二次函数》中考题集(28):6.4 二次函数的应用(解析版) 题型:解答题

在平面直角坐标系中,抛物线过原点O,且与x轴交于另一点A,其顶点为B.孔明同学用一把宽为3cm带刻度的矩形直尺对抛物线进行如下测量:
①量得OA=3cm;
②把直尺的左边与抛物线的对称轴重合,使得直尺左下端点与抛物线的顶点重合(如图1),测得抛物线与直尺右边的交点C的刻度读数为4.5.
请完成下列问题:
(1)写出抛物线的对称轴;
(2)求抛物线的解析式;
(3)将图中的直尺(足够长)沿水平方向向右平移到点A的右边(如图2),直尺的两边交x轴于点H、G,交抛物线于点E、F.求证:S梯形EFGH=(EF2-9).

查看答案和解析>>

科目: 来源:第6章《二次函数》中考题集(28):6.4 二次函数的应用(解析版) 题型:解答题

已知二次函数y=x2+bx+c+1的图象过点P(2,1).
(1)求证:c=-2b-4;
(2)求bc的最大值;
(3)若二次函数的图象与x轴交于点A(x1,0)、B(x2,0),△ABP的面积是,求b的值.

查看答案和解析>>

科目: 来源:第6章《二次函数》中考题集(28):6.4 二次函数的应用(解析版) 题型:解答题

如图所示,在平面直角坐标系中,点B的坐标为(-3,-4),线段OB绕原点逆时针旋转后与x轴的正半轴重合,点B的对应点为点A.
(1)直接写出点A的坐标,并求出经过A,O,B三点的抛物线的解析式;
(2)在抛物线的对称轴上是否存在点C,使BC+OC的值最小?若存在,求出点C的坐标,若不存在,请说明理由;
(3)如果点P是抛物线上的一个动点,且在x轴的上方,当点P运动到什么位置时,△PAB的面积最大?求出此时点P的坐标和△PAB的最大面积.

查看答案和解析>>

科目: 来源:第6章《二次函数》中考题集(28):6.4 二次函数的应用(解析版) 题型:解答题

已知抛物线y=-x2+bx+c的图象经过点A(m,0)、B(0,n),其中m、n是方程x2-6x+5=0的两个实数根,且m<n.
(1)求抛物线的解析式;
(2)设(1)中的抛物线与x轴的另一个交点为C,抛物线的顶点为D,求C、D点的坐标和△BCD的面积;
(3)P是线段OC上一点,过点P作PH⊥x轴,交抛物线于点H,若直线BC把△PCH分成面积相等的两部分,求P点的坐标.

查看答案和解析>>

科目: 来源:第6章《二次函数》中考题集(28):6.4 二次函数的应用(解析版) 题型:解答题

如图,在平面直角坐标系中,点A的坐标为(1,),△AOB的面积是
(1)求点B的坐标;
(2)求过点A、O、B的抛物线的解析式;
(3)在(2)中抛物线的对称轴上是否存在点C,使△AOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由;
(4)在(2)中x轴下方的抛物线上是否存在一点P,过点P作x轴的垂线,交直线AB于点D,线段OD把△AOB分成两个三角形,使其中一个三角形面积与四边形BPOD面积比为2:3?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:第6章《二次函数》中考题集(28):6.4 二次函数的应用(解析版) 题型:解答题

已知二次函数的图象与x轴有且只有一个交点A(-2,0),与y轴的交点为B(0,4),且其对称轴与y轴平行.
(1)求该二次函数的解析式,并在所给出坐标系中画出这个二次函数的大致图象;
(2)在该二次函数位于A、B两点之间的图象上取上点M,过点M分别作x轴、y轴的垂线段,垂足分别为点C、D.求矩形MCOD的周长的最小值和此时点M的坐标.

查看答案和解析>>

科目: 来源:第6章《二次函数》中考题集(28):6.4 二次函数的应用(解析版) 题型:解答题

如图,在平面直角坐标系中,已知A、B、C三点的坐标分别为A(-2,0),B(6,0),C(0,3).
(1)求经过A、B、C三点的抛物线的解析式;
(2)过C点作CD平行于x轴交抛物线于点D,写出D点的坐标,并求AD、BC的交点E的坐标;
(3)若抛物线的顶点为P,连接PC、PD,判断四边形CEDP的形状,并说明理由.

查看答案和解析>>

科目: 来源:第6章《二次函数》中考题集(28):6.4 二次函数的应用(解析版) 题型:解答题

如图1,已知梯形OABC,抛物线分别过点O(0,0)、A(2,0)、B(6,3).
(1)直接写出抛物线的对称轴、解析式及顶点M的坐标;
(2)将图1中梯形OABC的上下底边所在的直线OA、CB以相同的速度同时向上平移,分别交抛物线于点O1、A1、C1、B1,得到如图2的梯形O1A1B1C1.设梯形O1A1B1C1的面积为S,A1、B1的坐标分别为(x1,y1)、(x2,y2).用含S的代数式表示x2-x1,并求出当S=36时点A1的坐标;
(3)在图1中,设点D坐标为(1,3),动点P从点B出发,以每秒1个单位长度的速度沿着线段BC运动,动点Q从点D出发,以与点P相同的速度沿着线段DM运动.P、Q两点同时出发,当点Q到达点M时,P、Q两点同时停止运动.设P、Q两点的运动时间为t,是否存在某一时刻t,使得直线PQ、直线AB、x轴围成的三角形与直线PQ、直线AB、抛物线的对称轴围成的三角形相似?若存在,请求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:第6章《二次函数》中考题集(28):6.4 二次函数的应用(解析版) 题型:解答题

如图,直线y=hx+d与x轴和y轴分别相交于点A(-1,0),B(0,1),与双曲线y=在第一象限相交于点C;以AC为斜边、∠CAO为内角的直角三角形,与以CO为对角线、一边在x轴上的矩形面积相等;点C,P在以B为顶点的抛物线y=mx2+nx+k上;直线y=hx+d、双曲线y=和抛物线y=ax2+bx+c同时经过两个不同的点C,D.
(1)确定t的值;
(2)确定m,n,k的值;
(3)若无论a,b,c取何值,抛物线y=ax2+bx+c都不经过点P,请确定P的坐标.

查看答案和解析>>

科目: 来源:第6章《二次函数》中考题集(28):6.4 二次函数的应用(解析版) 题型:解答题

将直角边长为6的等腰Rt△AOC放在如图所示的平面直角坐标系中,点O为坐标原点,点C、A分别在x、y轴的正半轴上,一条抛物线经过点A、C及点B(-3,0).
(1)求该抛物线的解析式;
(2)若点P是线段BC上一动点,过点P作AB的平行线交AC于点E,连接AP,当△APE的面积最大时,求点P的坐标;
(3)在第一象限内的该抛物线上是否存在点G,使△AGC的面积与(2)中△APE的最大面积相等?若存在,请求出点G的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案