相关习题
 0  127795  127803  127809  127813  127819  127821  127825  127831  127833  127839  127845  127849  127851  127855  127861  127863  127869  127873  127875  127879  127881  127885  127887  127889  127890  127891  127893  127894  127895  127897  127899  127903  127905  127909  127911  127915  127921  127923  127929  127933  127935  127939  127945  127951  127953  127959  127963  127965  127971  127975  127981  127989  366461 

科目: 来源:第28章《圆》中考题集(57):28.2 与圆有关的位置关系(解析版) 题型:解答题

如图,在△ABC中,AB=AC,内切圆O与边BC、AC、AB分别切于D、E、F.
(1)求证:BF=CE;
(2)若∠C=30°,CE=2,求AC.

查看答案和解析>>

科目: 来源:第28章《圆》中考题集(58):28.2 与圆有关的位置关系(解析版) 题型:解答题

为了探索三角形的内切圆半径r与周长L、面积S之间的关系,在数学实验活动中,选取等边三角形(图甲)和直角三角形(图乙)进行研究.如图,⊙O是△ABC的内切圆,切点分别为点D、E、F.

(1)用刻度尺分别量出表中未度量的△ABC的长,填入空格处,并计算出周长L和面积S.(结果精确到0.1厘米)
 ACBCABrLs
图甲   0.6  
图乙  5.01.0  
(2)观察图形,利用上表实验数据分析、猜测特殊三角形的r与L、S之间关系,并证明这种关系对任意三角形(图丙)是否也成立?

查看答案和解析>>

科目: 来源:第28章《圆》中考题集(58):28.2 与圆有关的位置关系(解析版) 题型:解答题

阅读材料:如图(一),△ABC的周长为l,内切圆O的半径为r,连接OA、OB、OC,△ABC被划分为三个小三角形,用S△ABC表示△ABC的面积.

∵S△ABC=S△OAB+S△OBC+S△OCA
又∵S△OAB=AB•r,S△OBC=BC•r,S△OCA=CA•r
∴S△ABC=AB•r+BC•r+CA•r=l•r(可作为三角形内切圆半径公式)
(1)理解与应用:利用公式计算边长分为5、12、13的三角形内切圆半径;
(2)类比与推理:若四边形ABCD存在内切圆(与各边都相切的圆,如图(二))且面积为S,各边长分别为a、b、c、d,试推导四边形的内切圆半径公式;
(3)拓展与延伸:若一个n边形(n为不小于3的整数)存在内切圆,且面积为S,各边长分别为a1、a2、a3、…、an,合理猜想其内切圆半径公式(不需说明理由).

查看答案和解析>>

科目: 来源:第28章《圆》中考题集(58):28.2 与圆有关的位置关系(解析版) 题型:解答题

某新建小区要在一块等边三角形的公共区域内修建一个圆形花坛.
(1)若要使花坛面积最大,请你在这块公共区域(如图)内确定圆形花坛的圆心P;
(2)若这个等边三角形的边长为18米,请计算出花坛的面积.

查看答案和解析>>

科目: 来源:第28章《圆》中考题集(58):28.2 与圆有关的位置关系(解析版) 题型:解答题

如图,点A,B在直线MN上,AB=11厘米,⊙A,⊙B的半径均为1厘米.⊙A以每秒2厘米的速度自左向右运动,与此同时,⊙B的半径也不断增大,其半径r(厘米)与时间t(秒)之间的关系式为r=1+t(t≥0).
(1)试写出点A,B之间的距离d(厘米)与时间t(秒)之间的函数表达式;
(2)问点A出发后多少秒两圆相切?

查看答案和解析>>

科目: 来源:第28章《圆》中考题集(58):28.2 与圆有关的位置关系(解析版) 题型:解答题

张宇同学是一名天文爱好者,他通过查阅资料得知:地球、火星的运行轨道可以近似地看成是以太阳为圆的两个同心圆,且这两个同心圆在同一平面上(如图所示).由于地球和火星的运行速度不同,所以二者的位置不断发生变化.当地球、太阳和火星三者处在一条直线上,且太阳位于地球、火星中间时,称为“合”;当地球、太阳和火星三者处在一条直线上,且地球于太阳与火星中间时,称为“冲”.另外,从地球上看火星与太阳,当两条视线互相垂直时,分别称为“东方照”和“西方照”.已知地球距太阳15(千万千米),火星距太阳20.5(千万千米).
(1)分别求“合”、“冲”、“东方照”、“西方照”时,地球与火星的距离(结果保留准确值);
(2)如果从地球上发射宇宙飞船登上火星,为了节省燃料,应选择在什么位置时发射较好,说明你的理由.
(注:从地球上看火星,火星在地球左、右两侧时分别叫做“东方照”、“西方照”.)

查看答案和解析>>

科目: 来源:第28章《圆》中考题集(58):28.2 与圆有关的位置关系(解析版) 题型:解答题

已知⊙O1和⊙O2的半径都等于1,O1O2=5,在线段O1O2的延长线上取一点O3,使O2O3=3,以O3为圆心,R=5为半径作圆.

(1)如图1,⊙O3与线段O1O2相交于点P1,过点P1分别作⊙O1和⊙O2的切线P1A1、P1B1(A1、B1为切点),连接O1A1、O2B1,求P1A1:P1B1的值;
(2)如图2,若过O2作O2P2⊥O1O2交O3于点P2,又过点P2分别作⊙O1和⊙O2的切线P2A2、P2B2(A2、B2为切点),求P2A2:P2B2的值;
(3)设在⊙O3上任取一点P,过点P分别作⊙O1和⊙O2的切线PA、PB(A、B为切点),由(1)(2)的探究,请提出一个正确命题.(不要求证明)

查看答案和解析>>

科目: 来源:第28章《圆》中考题集(58):28.2 与圆有关的位置关系(解析版) 题型:解答题

已知点P在线段AB上,点O在线段AB延长线上.以点O为圆心,OP为半径作圆,点C是圆O上的一点.
(1)如图,如果AP=2PB,PB=BO.求证:△CAO∽△BCO;
(2)如果AP=m(m是常数,且m>1),BP=1,OP是OA,OB的比例中项.当点C在圆O上运动时,求AC:BC的值(结果用含m的式子表示);
(3)在(2)的条件下,讨论以BC为半径的圆B和以CA为半径的圆C的位置关系,并写出相应m的取值范围.

查看答案和解析>>

科目: 来源:第28章《圆》中考题集(58):28.2 与圆有关的位置关系(解析版) 题型:解答题

如图1,已知Rt△ABC中,∠CAB=30°,BC=5.过点A作AE⊥AB,且AE=15,连接BE交AC于点P.
(1)求PA的长;
(2)以点A为圆心,AP为半径作⊙A,试判断BE与⊙A是否相切,并说明理由;
(3)如图2,过点C作CD⊥AE,垂足为D.以点A为圆心,r为半径作⊙A;以点C为圆心,R为半径作⊙C.若r和R的大小是可变化的,并且在变化过程中保持⊙A和⊙C相切,且使D点在⊙A的内部,B点在⊙A的外部,求r和R的变化范围.

查看答案和解析>>

科目: 来源:第28章《圆》中考题集(58):28.2 与圆有关的位置关系(解析版) 题型:解答题

如图,直角梯形ABCD中,AD∥BC,∠A=90°,∠C=60°,AD=3cm,BC=9cm.⊙O1的圆心O1从点A开始沿折线A-D-C以1cm/s的速度向点C运动,⊙O2的圆心O2从点B开始沿BA边以cm/s的速度向点A运动,⊙O1半径为2cm,⊙O2的半径为4cm,若O1、O2分别从点A、点B同时出发,运动的时间为t.
(1)请求出⊙O2与腰CD相切时t的值;
(2)在0s<t≤3s范围内,当t为何值时,⊙O1与⊙O2外切?

查看答案和解析>>

同步练习册答案