相关习题
 0  127997  128005  128011  128015  128021  128023  128027  128033  128035  128041  128047  128051  128053  128057  128063  128065  128071  128075  128077  128081  128083  128087  128089  128091  128092  128093  128095  128096  128097  128099  128101  128105  128107  128111  128113  128117  128123  128125  128131  128135  128137  128141  128147  128153  128155  128161  128165  128167  128173  128177  128183  128191  366461 

科目: 来源:第27章《二次函数》中考题集(50):27.3 实践与探索(解析版) 题型:解答题

如图,在梯形ABCD中,AD∥BC,AD=2,BC=4,点M是AD的中点,△MBC是等边三角形.
(1)求证:梯形ABCD是等腰梯形;
(2)动点P、Q分别在线段BC和MC上运动,且∠MPQ=60°保持不变.设PC=x,MQ=y,求y与x的函数关系式;
(3)在(2)中:
①当动点P、Q运动到何处时,以点P、M和点A、B、C、D中的两个点为顶点的四边形是平行四边形?并指出符合条件的平行四边形的个数;
②当y取最小值时,判断△PQC的形状,并说明理由.

查看答案和解析>>

科目: 来源:第27章《二次函数》中考题集(50):27.3 实践与探索(解析版) 题型:解答题

如图,在矩形ABCD中,AB=3,AD=1,点P在线段AB上运动,设AP=x,现将纸片折叠,使点D与点P重合,得折痕EF(点E、F为折痕与矩形边的交点),再将纸片还原.
(1)当x=0时,折痕EF的长为______;当点E与点A重合时,折痕EF的长为______

查看答案和解析>>

科目: 来源:第27章《二次函数》中考题集(50):27.3 实践与探索(解析版) 题型:解答题

如图,在直线l上摆放有△ABC和直角梯形DEFG,且CD=6cm;在△ABC中:∠C=90°,∠A=30°,AB=4cm;在直角梯形DEFG中:EF∥DG,∠DGF=90°,DG=6cm,DE=4cm,∠EDG=60度.解答下列问题:

(1)旋转:将△ABC绕点C顺时针方向旋转90°,请你在图中作出旋转后的对应图形△A1B1C,并求出AB1的长度;
(2)翻折:将△A1B1C沿过点B1且与直线l垂直的直线翻折,得到翻折后的对应图形△A2B1C1,试判定四边形A2B1DE的形状并说明理由;
(3)平移:将△A2B1C1沿直线l向右平移至△A3B2C2,若设平移的距离为x,△A3B2C2与直角梯形重叠部分的面积为y,当y等于△ABC面积的一半时,x的值是多少.

查看答案和解析>>

科目: 来源:第27章《二次函数》中考题集(50):27.3 实践与探索(解析版) 题型:解答题

如图,直线y=-3x-3分别交x轴、y轴于A、B两点,△AOB绕点O按逆时针方向旋转90°后得到△DOC,抛物线y=ax2+bx+c经过A、B、C三点.
(1)填空:A(______,______)、B(______,______)、C(______,______);
(2)求抛物线的函数关系式;
(3)E为抛物线的顶点,在线段DE上是否存在点P,使得以C、D、P为顶点的三角形与△DOC相似?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:第27章《二次函数》中考题集(50):27.3 实践与探索(解析版) 题型:解答题

如图,已知二次函数y=ax2+bx+3的图象与x轴相交于点A、C,与y轴相交于点B,A(),且△AOB∽△BOC.
(1)求C点坐标、∠ABC的度数及二次函数y=ax2+bx+3的关系式;
(2)在线段AC上是否存在点M(m,0).使得以线段BM为直径的圆与边BC交于P点(与点B不同),且以点P、C、O为顶点的三角形是等腰三角形?若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:第27章《二次函数》中考题集(51):27.3 实践与探索(解析版) 题型:解答题

已知一个直角三角形纸片OAB,其中∠AOB=90°,OA=2,OB=4.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB交于点C,与边AB交于点D.
(Ⅰ)若折叠后使点B与点A重合,求点C的坐标;
(Ⅱ)若折叠后点B落在边OA上的点为B′,设OB′=x,OC=y,试写出y关于x的函数解析式,并确定y的取值范围;
(Ⅲ)若折叠后点B落在边OA上的点为B″,且使B″D∥OB,求此时点C的坐标.

查看答案和解析>>

科目: 来源:第27章《二次函数》中考题集(51):27.3 实践与探索(解析版) 题型:解答题

阅读理解:如图1,在直角梯形ABCD中,AB∥CD,∠B=90°,点P在BC边上,当∠APD=90°时,易证△ABP∽△PCD,从而得到BP•PC=AB•CD,解答下列问题.
(1)模型探究:如图2,在四边形ABCD中,点P在BC边上,当∠B=∠C=∠APD时,求证:BP•PC=AB•CD;
(2)拓展应用:如图3,在四边形ABCD中,AB=4,BC=10,CD=6,∠B=∠C=60°,AO⊥BC于点O,以O为顶点,以BC所在直线为x轴,建立平面直角坐标系,点P为线段OC上一动点(不与端点O、C重合)
(i)当∠APD=60°时,求点P的坐标;
(ii)过点P作PE⊥PD,交y轴于点E,设PO=x,OE=y,求y与x的函数关系式,并写出自变量x的取值范围.

查看答案和解析>>

科目: 来源:第27章《二次函数》中考题集(51):27.3 实践与探索(解析版) 题型:解答题

如图,直角梯形OABC中,AB∥OC,O为坐标原点,点A在y轴正半轴上,点C在x轴正半轴上,点B坐标为(2,2),∠BCO=60°,OH⊥BC于点H.动点P从点H出发,沿线段HO向点O运动,动点Q从点O出发,沿线段OA向点A运动,两点同时出发,速度都为每秒1个单位长度.设点P运动的时间为t秒.
(1)求OH的长;
(2)若△OPQ的面积为S(平方单位).求S与t之间的函数关系式.并求t为何值时,△OPQ的面积最大,最大值是多少;
(3)设PQ与OB交于点M.
①当△OPM为等腰三角形时,求(2)中S的值. 
②探究线段OM长度的最大值是多少,直接写出结论.

查看答案和解析>>

科目: 来源:第27章《二次函数》中考题集(51):27.3 实践与探索(解析版) 题型:解答题

如图,AB、CD是竖立在公路两侧,且架设了跨过公路的高压电线的电杆,AB=CD=16米.现在点A处观测电杆CD的视角为19°42′,视线AD与AB的夹角为59度.以点B为坐标原点,向右的水平方向为x轴的正方向,建立平面直角坐标系.
(1)求电杆AB、CD之间的距离和点D的坐标;
(2)在今年年初的冰雪灾害中,高压电线由于结冰下垂近似成抛物线y=x2+bx(b为常数).在通电情况,高压电线周围12米内为非安全区域.请问3.2米高的车辆从高压电线下方通过时,是否有危险,并说明理由.

查看答案和解析>>

科目: 来源:第27章《二次函数》常考题集(01):27.1 二次函数(解析版) 题型:选择题

函数y=3x2+x-4是( )
A.一次函数
B.二次函数
C.正比例函数
D.反比例函数

查看答案和解析>>

同步练习册答案