相关习题
 0  128033  128041  128047  128051  128057  128059  128063  128069  128071  128077  128083  128087  128089  128093  128099  128101  128107  128111  128113  128117  128119  128123  128125  128127  128128  128129  128131  128132  128133  128135  128137  128141  128143  128147  128149  128153  128159  128161  128167  128171  128173  128177  128183  128189  128191  128197  128201  128203  128209  128213  128219  128227  366461 

科目: 来源:第27章《二次函数》中考题集(35):27.3 实践与探索(解析版) 题型:解答题

如图(1)所示,一张平行四边形纸片ABCD,AB=10,AD=6,BD=8,沿对角线BD把这张纸片剪成△AB1D1和△CB2D2两个三角形(如图(2)所示),将△AB1D1沿直线AB1方向移动(点B2始终在AB1上,AB1与CD2始终保持平行),当点A与B2重合时停止平移,在平移过程中,AD1与B2D2交于点E,B2C与B1D1交于点F,
(1)当△AB1D1平移到图(3)的位置时,试判断四边形B2FD1E是什么四边形?并证明你的结论;
(2)设平移距离B2B1为x,四边形B2FD1E的面积为y,求y与x的函数关系式;并求出四边形B2FD1E的面积的最大值;
(3)连接B1C(请在图(3)中画出).当平移距离B2B1的值是多少时,△B1B2F与△B1CF相似?

查看答案和解析>>

科目: 来源:第27章《二次函数》中考题集(35):27.3 实践与探索(解析版) 题型:解答题

抛物线y=ax2+bx+c(a≠0)的顶点为M,与x轴的交点为A、B(点B在点A的右侧),△ABM的三个内角∠M、∠A、∠B所对的边分别为m、a、b.若关于x的一元二次方程(m-a)x2+2bx+(m+a)=0有两个相等的实数根.
(1)判断△ABM的形状,并说明理由.
(2)当顶点M的坐标为(-2,-1)时,求抛物线的解析式,并画出该抛物线的大致图形.
(3)若平行于x轴的直线与抛物线交于C、D两点,以CD为直径的圆恰好与x轴相切,求该圆的圆心坐标.

查看答案和解析>>

科目: 来源:第27章《二次函数》中考题集(35):27.3 实践与探索(解析版) 题型:解答题

一条抛物线经过原点O与A(4,0)点,顶点B在直线y=kx+2k(k≠0)上.将这条抛物线先向上平移m(m>0)个单位,再向右平移m个单位,得到的抛物线的顶点B′仍然在直线y=kx+2k上,点A移动到了点A′.
(1)求k值及原抛物线的表达式;
(2)求使△A′OB′的面积是6032的m值.

查看答案和解析>>

科目: 来源:第27章《二次函数》中考题集(35):27.3 实践与探索(解析版) 题型:解答题

如图,已知点A的坐标是(-1,0),点B的坐标是(9,0),以AB为直径作⊙O′,交y轴的负半轴于点C,连接AC,BC,过A,B,C三点作抛物线.
(1)求抛物线的解析式;
(2)点E是AC延长线上一点,∠BCE的平分线CD交⊙O′于点D,连接BD,求直线BD的解析式;
(3)在(2)的条件下,抛物线上是否存在点P,使得∠PDB=∠CBD?如果存在,请求出点P的坐标;如果不存在,请说明理由.
第三问改成,在(2)的条件下,点P是直线BC下方的抛物线上一动点,当点P运动到什么位置时,△PCD的面积是△BCD面积的三分之一,求此时点P的坐标.

查看答案和解析>>

科目: 来源:第27章《二次函数》中考题集(35):27.3 实践与探索(解析版) 题型:解答题

已知:如图,抛物线y=ax2-2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A、B,点A的坐标为(4,0).
(1)求该抛物线的解析式;
(2)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;
(3)若平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:第27章《二次函数》中考题集(35):27.3 实践与探索(解析版) 题型:解答题

如图,在直角坐标系xOy中,点P为函数y=x2在第一象限内的图象上的任一点,点A的坐标为(0,1),直线l过B(0,-1)且与x轴平行,过P作y轴的平行线分别交x轴,l于C,Q,连接AQ交x轴于H,直线PH交y轴于R.
(1)求证:H点为线段AQ的中点;
(2)求证:①四边形APQR为平行四边形;②平行四边形APQR为菱形;
(3)除P点外,直线PH与抛物线y=x2有无其它公共点并说明理由.

查看答案和解析>>

科目: 来源:第27章《二次函数》中考题集(36):27.3 实践与探索(解析版) 题型:解答题

已知点A(a,y1)、B(2a,y2)、C(3a,y3)都在抛物线y=5x2+12x上.
(1)求抛物线与x轴的交点坐标;
(2)当a=1时,求△ABC的面积;
(3)是否存在含有y1,y2,y3,且与a无关的等式?如果存在,试给出一个,并加以证明;如果不存在,说明理由.

查看答案和解析>>

科目: 来源:第27章《二次函数》中考题集(36):27.3 实践与探索(解析版) 题型:解答题

如图,二次函数y=ax2-5ax+4a(a≠0)的图象与x轴交于A、B两点(A在B的左侧),与y轴交于点C,点C关于抛物线对称轴的对称点为D,连接BD.
(1)求A、B两点的坐标;
(2)若AD⊥BC,垂足为P,求二次函数的表达式;
(3)在(2)的条件下,若直线x=m把△ABD的面积分为1:2的两部分,求m的值.

查看答案和解析>>

科目: 来源:第27章《二次函数》中考题集(36):27.3 实践与探索(解析版) 题型:解答题

已知直线y=-x-1与x、y轴分别交于A、B曰两点,将其向右平移4个单位所得直线分别与x、y轴交于C、D两点.
(1)求C、D两点的坐标;
(2)求过A、C、D三点的抛物线的解析式;
(3)在(2)中所求抛物线的对称轴上,是否存在点P,使△PAB为等腰三角形?若存在,求出所有的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:第27章《二次函数》中考题集(36):27.3 实践与探索(解析版) 题型:解答题

在直角坐标平面中,O为坐标原点,二次函数y=-x2+(k-1)x+4的图象与y轴交于点A,与x轴的负半轴交于点B,且S△OAB=6.
(1)求点A与点B的坐标;
(2)求此二次函数的解析式;
(3)如果点P在x轴上,且△ABP是等腰三角形,求点P的坐标.

查看答案和解析>>

同步练习册答案