相关习题
 0  128044  128052  128058  128062  128068  128070  128074  128080  128082  128088  128094  128098  128100  128104  128110  128112  128118  128122  128124  128128  128130  128134  128136  128138  128139  128140  128142  128143  128144  128146  128148  128152  128154  128158  128160  128164  128170  128172  128178  128182  128184  128188  128194  128200  128202  128208  128212  128214  128220  128224  128230  128238  366461 

科目: 来源:第27章《二次函数》中考题集(31):27.3 实践与探索(解析版) 题型:解答题

已知抛物线y=ax2+bx+c(a≠0)经过点B(2,0)和点C(0,8),且它的对称轴是直线x=-2.
(1)求抛物线与x轴的另一交点A的坐标;
(2)求此抛物线的解析式;
(3)连接AC,BC,若点E是线段AB上的一个动点(与点A,点B)不重合,过点E作EF∥AC交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式;
(4)在(3)的基础上试说明S是否存在最大值?若存在,请求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:第27章《二次函数》中考题集(31):27.3 实践与探索(解析版) 题型:解答题

如图,抛物线F:y=ax2+bx+c(a>0)与y轴相交于点C,直线L1经过点C且平行于x轴,将L1向上平移t个单位得到直线L2,设L1与抛物线F的交点为C、D,L2与抛物线F的交点为A、B,连接AC、BC.
(1)当,c=1,t=2时,探究△ABC的形状,并说明理由;
(2)若△ABC为直角三角形,求t的值(用含a的式子表示);
(3)在(2)的条件下,若点A关于y轴的对称点A’恰好在抛物线F的对称轴上,连接A’C,BD,求四边形A’CDB的面积(用含a的式子表示)

查看答案和解析>>

科目: 来源:第27章《二次函数》中考题集(31):27.3 实践与探索(解析版) 题型:解答题

如图所示,对称轴为x=3的抛物线y=ax2+2x与x轴相交于点B,O.
(1)求抛物线的解析式,并求出顶点A的坐标;
(2)连接AB,把AB所在的直线平移,使它经过原点O,得到直线l.点P是l上一动点.设以点A、B、O、P为顶点的四边形面积为S,点P的横坐标为t,当0<S≤18时,求t的取值范围;
(3)在(2)的条件下,当t取最大值时,抛物线上是否存在点Q,使△OPQ为直角三角形且OP为直角边?若存在,直接写出点Q的坐标;若不存在,说明理由.

查看答案和解析>>

科目: 来源:第27章《二次函数》中考题集(31):27.3 实践与探索(解析版) 题型:解答题

已知:如图,抛物线y=ax2+bx+c与x轴相交于两点A(1,0),B(3,0),与y轴相交于点C(0,3).
(1)求抛物线的函数关系式;
(2)若点D(,m)是抛物线y=ax2+bx+c上的一点,请求出m的值,并求出此时△ABD的面积.

查看答案和解析>>

科目: 来源:第27章《二次函数》中考题集(31):27.3 实践与探索(解析版) 题型:解答题

已知抛物线y=ax2+bx+c的顶点为A(3,-3),与x轴的一个交点为B(1,0).
(1)求抛物线的解析式.
(2)P是y轴上一个动点,求使P到A、B两点的距离之和最小的点P的坐标.
(3)设抛物线与x轴的另一个交点为C.在抛物线上是否存在点M,使得△MBC的面积等于以点A、P、B、C为顶点的四边形面积的三分之一?若存在,请求出所有符合条件的点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:第27章《二次函数》中考题集(31):27.3 实践与探索(解析版) 题型:解答题

在平面直角坐标系xOy中,抛物线y=ax2+bx+c与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点A的坐标为(-3,0),若将经过A、C两点的直线y=kx+b沿y轴向下平移3个单位后恰好经过原点,且抛物线的对称轴是直线x=-2.
(1)求直线AC及抛物线的函数表达式;
(2)如果P是线段AC上一点,设△ABP、△BPC的面积分别为S△ABP、S△BPC,且S△ABP:S△BPC=2:3,求点P的坐标;
(3)设⊙Q的半径为1,圆心Q在抛物线上运动,则在运动过程中是否存在⊙Q与坐标轴相切的情况?若存在,求出圆心Q的坐标;若不存在,请说明理由.并探究:若设⊙Q的半径为r,圆心Q在抛物线上运动,则当r取何值时,⊙Q与两坐轴同时相切.

查看答案和解析>>

科目: 来源:第27章《二次函数》中考题集(31):27.3 实践与探索(解析版) 题型:解答题

如图(1),抛物线y=x2+x-4与y轴交于点A,E(0,b)为y轴上一动点,过点E的直线y=x+b与抛物线交于点B、C.
(1)求点A的坐标;
(2)当b=0时(如图(2)),△ABE与△ACE的面积大小关系如何?当b>-4时,上述关系还成立吗,为什么?
(3)是否存在这样的b,使得△BOC是以BC为斜边的直角三角形?若存在,求出b;若不存在,说明理由.

查看答案和解析>>

科目: 来源:第27章《二次函数》中考题集(31):27.3 实践与探索(解析版) 题型:解答题

如图,已知抛物线y=x2+bx+c与x轴交于点A(-4,0)和B(1,0)两点,与y轴交于C点.
(1)求此抛物线的解析式;
(2)设E是线段AB上的动点,作EF∥AC交BC于F,连接CE,当△CEF的面积是△BEF面积的2倍时,求E点的坐标;
(3)若P为抛物线上A、C两点间的一个动点,过P作y轴的平行线,交AC于Q,当P点运动到什么位置时,线段PQ的值最大,并求此时P点的坐标.

查看答案和解析>>

科目: 来源:第27章《二次函数》中考题集(31):27.3 实践与探索(解析版) 题型:解答题

已知:二次函数y=ax2+bx-2的图象经过点(1,0),一次函数图象经过原点和点(1,-b),其中a>b>0且a、b为实数.
(1)求一次函数的表达式(用含b的式子表示);
(2)试说明:这两个函数的图象交于不同的两点;
(3)设(2)中的两个交点的横坐标分别为x1、x2,求|x1-x2|的范围.

查看答案和解析>>

科目: 来源:第27章《二次函数》中考题集(31):27.3 实践与探索(解析版) 题型:解答题

如图,在平面直角坐标系中,矩形OABC的两边分别在x轴和y轴上,OA=cm,OC=8cm,现有两动点P、Q分别从O、C同时出发,P在线段OA上沿OA方向以每秒cm的速度匀速运动,Q在线段CO上沿CO方向以每秒1cm的速度匀速运动、设运动时间为t秒.
(1)用t的式子表示△OPQ的面积S;
(2)求证:四边形OPBQ的面积是一个定值,并求出这个定值;
(3)当△OPQ与△PAB和△QPB相似时,抛物线y=x2+bx+c经过B、P两点,过线段BP上一动点M作y轴的平行线交抛物线于N,当线段MN的长取最大值时,求直线MN把四边形OPBQ分成两部分的面积之比.

查看答案和解析>>

同步练习册答案