相关习题
 0  128058  128066  128072  128076  128082  128084  128088  128094  128096  128102  128108  128112  128114  128118  128124  128126  128132  128136  128138  128142  128144  128148  128150  128152  128153  128154  128156  128157  128158  128160  128162  128166  128168  128172  128174  128178  128184  128186  128192  128196  128198  128202  128208  128214  128216  128222  128226  128228  128234  128238  128244  128252  366461 

科目: 来源:第27章《二次函数》中考题集(24):27.3 实践与探索(解析版) 题型:解答题

天羽服装厂生产M、N型两种服装,受资金及规模限制,每天最多只能用A种面料68米和B种面料62米生产M、N型两种服装共80套.已知M、N型服装每套所需面料和成本如下表,设每天生产M型服装x套.
AB成本
M型1.1m0.4m100元
N型0.6m0.9m80元
(1)若要每天成本不高于7200元,则该厂每天生产M型服装最多多少套,最少多少套?
(2)经市场调查,生产的M、N型服装有两种销售方案(假设每天生产的服装都能全部售出).
方案Ⅰ:两种型号服装都在本市销售,M型180元/件、N型120元/件;
方案Ⅱ:N型服装在本市销售,120元/件,M型服装批发给H市服装商,其每件的批发价y(元)与批量x(件)之间的关系如图所示.
如果你是厂长,应采用哪种销售方案可使每天获利最大,最大利润是多少?并确定相应的生产方案.

查看答案和解析>>

科目: 来源:第27章《二次函数》中考题集(24):27.3 实践与探索(解析版) 题型:解答题

某商业集团新建一小车停车场,经测算,此停车场每天需固定支出的费用(设施维修费、车辆管理人员工资等)为800元.为制定合理的收费标准,该集团对一段时间每天小车停放辆次与每辆次小车的收费情况进行了调查,发现每辆次小车的停车费不超过5元时,每天来此处停放的小车可达1440辆次;若停车费超过5元,则每超过1元,每天来此处停放的小车就减少120辆次.为便于结算,规定每辆次小车的停车费x(元)只取整数,用y(元)表示此停车场的日净收入,且要求日净收入不低于2512元.(日净收入=每天共收取的停车费-每天的固定支出)
(1)当x≤5时,写出y与x之间的关系式,并说明每辆小车的停车费最少不低于多少元;
(2)当x>5时,写出y与x之间的函数关系式(不必写出x的取值范围);
(3)该集团要求此停车场既要吸引客户,使每天小车停放的辆次较多,又要有较大的日净收入.按此要求,每辆次小车的停车费应定为多少元?此时日净收入是多少?

查看答案和解析>>

科目: 来源:第27章《二次函数》中考题集(24):27.3 实践与探索(解析版) 题型:解答题

某农户计划利用现有的一面墙再修四面墙,建造如图所示的长方体水池,培育不同品种的鱼苗.他已备足可以修高为1.5m、长18m的墙的材料准备施工,设图中与现有一面墙垂直的三面墙的长度都为xm,即AD=EF=BC=xm.(不考虑墙的厚度)
(1)若想水池的总容积为36m3,x应等于多少?
(2)求水池的总容积V与x的函数关系式,并直接写出x的取值范围;
(3)若想使水池的总容积V最大,x应为多少?最大容积是多少?

查看答案和解析>>

科目: 来源:第27章《二次函数》中考题集(24):27.3 实践与探索(解析版) 题型:解答题

为了改善小区环境,某小区决定要在一块一边靠墙(墙长25m)的空地上修建一个矩形绿化带ABCD,绿化带一边靠墙,另三边用总长为40m的栅栏围住(如图4).若设绿化带的BC边长为xm,绿化带的面积为ym2
(1)求y与x之间的函数关系式,并写出自变量x的取值范围;
(2)当x为何值时,满足条件的绿化带的面积最大.

查看答案和解析>>

科目: 来源:第27章《二次函数》中考题集(24):27.3 实践与探索(解析版) 题型:解答题

容积率t是指在房地产开发中建筑面积与用地面积之比,即t=,为充分利用土地资源,更好地解决人们的住房需求,并适当的控制建筑物的高度,一般地容积率t不小于1且不大于8.一房地产开发商在开发某小区时,结合往年开发经验知,建筑面积M(m2)与容积率t的关系可近似地用如图(1)中的线段l来表示;1 m2建筑面积上的资金投入Q(万元)与容积率t的关系可近似地用如图(2)中的一段抛物线段c来表示.
(Ⅰ)试求图(1)中线段l的函数关系式,并求出开发该小区的用地面积;
(Ⅱ)求出图(2)中抛物线段c的函数关系式.

查看答案和解析>>

科目: 来源:第27章《二次函数》中考题集(24):27.3 实践与探索(解析版) 题型:解答题

某种日记本的专卖柜台,每天柜台的租金,人员工资等固定费用为160元,该日记本每本进价是4元,规定销售单价不得高于8元/本,也不得低于4元/本,调查发现日均销售量y(本)与销售单价x(元)的函数图象如图线段AB.
(1)求日均销售量y(本)与销售单价x(元)的函数关系式;
(2)当销售单价为多少元时,日均获利最多,获得最多是多少元?

查看答案和解析>>

科目: 来源:第27章《二次函数》中考题集(24):27.3 实践与探索(解析版) 题型:解答题

用长为12 m的篱笆,一边利用足够长的墙围出一块苗圃.如图,围出的苗圃是五边形ABCDE,AE⊥AB,BC⊥AB,∠C=∠D=∠E.设CD=DE=xm,五边形ABCDE的面积为S m2.问当x取什么值时,S最大并求出S的最大值.

查看答案和解析>>

科目: 来源:第27章《二次函数》中考题集(24):27.3 实践与探索(解析版) 题型:解答题

某商场将每台进价为3000元的彩电以3900元的销售价售出,每天可销售出6台.假设这种品牌的彩电每台降价100x(x为正整数)元,每天可多售出3x台.(注:利润=销售价-进价)
(1)设商场每天销售这种彩电获得的利润为y元,试写出y与x之间的函数关系式;
(2)销售该品牌彩电每天获得的最大利润是多少?此时,每台彩电的销售价是多少时,彩电的销售量和营业额均较高?

查看答案和解析>>

科目: 来源:第27章《二次函数》中考题集(24):27.3 实践与探索(解析版) 题型:解答题

武夷山市某茶厂生产某品牌茶叶,它的成本价是每千克180元,售价是每千克230元,年销售量为10 000千克.随着产量增加,为了扩大销售量,增加效益,公司决定拿出一定量的资金做广告.根据市场调查,若每年投入广告费为x(万元)时,产品的年销售量将是原销售量的y倍,且y与x之间的关系如图所示,可近似看作是抛物线的一部分.
(1)根据图象提供的信息,求y与x之间的函数关系式;
(2)求年利润S(万元)与广告费x(万元)之间的函数关系式;(年利润S=年销售总额-成本费-广告费)
(3)问广告费x(万元)在什么范围内,公司获得的年利润S(万元)随广告费的增大而增多?

查看答案和解析>>

同步练习册答案