相关习题
 0  128062  128070  128076  128080  128086  128088  128092  128098  128100  128106  128112  128116  128118  128122  128128  128130  128136  128140  128142  128146  128148  128152  128154  128156  128157  128158  128160  128161  128162  128164  128166  128170  128172  128176  128178  128182  128188  128190  128196  128200  128202  128206  128212  128218  128220  128226  128230  128232  128238  128242  128248  128256  366461 

科目: 来源:第27章《二次函数》中考题集(23):27.3 实践与探索(解析版) 题型:解答题

某工厂要赶制一批抗震救灾用的大型活动板房.如图,板房一面的形状是由矩形和抛物线的一部分组成,矩形长为12m,抛物线拱高为5.6m.
(1)在如图所示的平面直角坐标系中,求抛物线的表达式.
(2)现需在抛物线AOB的区域内安装几扇窗户,窗户的底边在AB上,每扇窗户宽1.5m,高1.6m,相邻窗户之间的间距均为0.8m,左右两边窗户的窗角所在的点到抛物线的水平距离至少为0.8m.请计算最多可安装几扇这样的窗户?

查看答案和解析>>

科目: 来源:第27章《二次函数》中考题集(23):27.3 实践与探索(解析版) 题型:解答题

现有一块矩形场地,如图所示,长为40m,宽为30m,要将这块地划分为四块分别种植:A.兰花;B.菊花;C.月季;D.牵牛花.
(1)求出这块场地中种植B菊花的面积y与B场地的长x之间的函数关系式;求出此函数与x轴的交点坐标,并写出自变量的取值范围;
(2)当x是多少时,种植菊花的面积最大,最大面积是多少?请在格点图中画出此函数图象的草图(提示:找三点描出图象即可).

查看答案和解析>>

科目: 来源:第27章《二次函数》中考题集(23):27.3 实践与探索(解析版) 题型:解答题

某商品的进价为每件30元,现在的售价为每件40元,每星期可卖出150件.市场调查反映:如果每件的售价每涨1元(售价每件不能高于45元),那么每星期少卖10件.设每件涨价x元(x为非负整数),每星期的销量为y件.
(1)求y与x的函数关系式及自变量x的取值范围;
(2)如何定价才能使每星期的利润最大且每星期的销量较大?每星期的最大利润是多少?

查看答案和解析>>

科目: 来源:第27章《二次函数》中考题集(23):27.3 实践与探索(解析版) 题型:解答题

一快餐店试销某种套餐,试销一段时间后发现,每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本).若每份售价不超过10元,每天可销售400份;若每份售价超过10元,每提高1元,每天的销售量就减少40份.为了便于结算,每份套餐的售价x(元)取整数,用y(元)表示该店日净收入.(日净收入=每天的销售额一套餐成本-每天固定支出)
(1)求y与x的函数关系式;
(2)若每份套餐售价不超过10元,要使该店日净收入不少于800元,那么每份售价最少不低于多少元;
(3)该店既要吸引顾客,使每天销售量较大,又要有较高的日净收入.按此要求,每份套餐的售价应定为多少元?此时日净收入为多少?

查看答案和解析>>

科目: 来源:第27章《二次函数》中考题集(23):27.3 实践与探索(解析版) 题型:解答题

某市种植某种绿色蔬菜,全部用来出口.为了扩大出口规模,该市决定对这种蔬菜的种植实行政府补贴,规定每种植-亩这种蔬菜一次性补贴菜农若干元.经调查,种植亩数y(亩)与补贴数额x(元)之间大致满足如图1所示的一次函数关系.随着补贴数额x的不断增大,出口量也不断增加,但每亩蔬菜的收益z(元)会相应降低,且z与x之间也大致满足如图2所示的一次函数关系.
(1)在政府未出台补贴措施前,该市种植这种蔬菜的总收益额为多少?
(2)分别求出政府补贴政策实施后,种植亩数y和每亩蔬菜的收益z与政府补贴数额x之间的函数关系式;
(3)要使全市这种蔬菜的总收益w(元)最大,政府应将每亩补贴数额x定为多少?并求出总收益w的最大值.

查看答案和解析>>

科目: 来源:第27章《二次函数》中考题集(23):27.3 实践与探索(解析版) 题型:解答题

某生物科技发展公司投资2000万元,研制出一种绿色保健食品.已知该产品的成本为40元/件,试销时,售价不低于成本价,又不高于180元/件.经市场调查知,年销售量y(万件)与销售单位x(元/件)的关系满足下表所示的规律.
销售单价x(元/件)6065708085
年销售量y(万件)140135130120115
(1)y与x之间的函数关系式是______,自变量x的取值范围为______;
(2)经测算:年销售量不低于90万件时,每件产品成本降低2元,设销售该产品年获利润为W(万元)(W=年销售额-成本-投资),求出年销售量低于90万件和不低于90万件时,W与x之间的函数关系式;
(3)在(2)的条件下,当销售单位定为多少时,公司销售这种产品年获利润最大?最大利润为多少万元?

查看答案和解析>>

科目: 来源:第27章《二次函数》中考题集(23):27.3 实践与探索(解析版) 题型:解答题

某宾馆有客房90间,当每间客房的定价为每天140元时,客房会全部住满.当每间客房每天的定价每涨10元时,就会有5间客房空闲.如果旅客居住客房,宾馆需对每间客房每天支出60元的各种费用.
(1)请写出该宾馆每天的利润y(元)与每间客房涨价x(元)之间的函数关系式;
(2)设某天的利润为8000元,8000元的利润是否为该天的最大利润?如果是,请说明理由;如果不是,请求出最大利润,并指出此时客房定价应为多少元?
(3)请回答客房定价在什么范围内宾馆就可获得利润?

查看答案和解析>>

科目: 来源:第27章《二次函数》中考题集(23):27.3 实践与探索(解析版) 题型:解答题

某产品第一季度每件成本为50元,第二三季度每件产品平均降低成本的百分率为x.
(1)衣用含x的代数式表示第二季度每件产品的成本;
(2)如果第三季度每件产品成本比第一季度少9.5元,试求x的值;
(3)该产品第二季度每件的销售价为60元,第三季度每件的销售价比第二季度有所下降,若下降的百分率与第二、三季度每件产品平均降低成本的百分率相同,且第三季度每件产品的销售价不低于48元,设第三季度每件产品获得的利润为y元,试求y与x的函数关系式,并利用函数图象与性质求y的最大值.(注:利润=销售价-成本)

查看答案和解析>>

科目: 来源:第27章《二次函数》中考题集(23):27.3 实践与探索(解析版) 题型:解答题

王亮同学善于改进学习方法,他发现对解题过程进行回顾反思,效果会更好.某一天他利用30分钟时间进行自主学习.假设他用于解题的时间x(单位:分钟)与学习收益量y的关系如图甲所示,用于回顾反思的时间x(单位:分钟)与学习收益量y的关系如图乙所示(其中OA是抛物线的一部分,A为抛物线的顶点),且用于回顾反思的时间不超过用于解题的时间.

(1)求王亮解题的学习收益量y与用于解题的时间x之间的函数关系式,并写出自变量x的取值范围;
(2)求王亮回顾反思的学习收益量y与用于回顾反思的时间x之间的函数关系式;
(3)王亮如何分配解题和回顾反思的时间,才能使这30分钟的学习收益总量最大?
(学习收益总量=解题的学习收益量+回顾反思的学习收益量)

查看答案和解析>>

科目: 来源:第27章《二次函数》中考题集(23):27.3 实践与探索(解析版) 题型:解答题

某服装公司试销一种成本为每件50元的T恤衫,规定试销时的销售单价不低于成本价,又不高于每件70元,试销中销售量y(件)与销售单价x(元)的关系可以近似的看作一次函数(如图).
(1)求y与x之间的函数关系式;
(2)设公司获得的总利润(总利润=总销售额-总成本)为P元,求P与x之间的函数关系式,并写出自变量x的取值范围;根据题意判断:当x取何值时,P的值最大,最大值是多少?

查看答案和解析>>

同步练习册答案