相关习题
 0  128065  128073  128079  128083  128089  128091  128095  128101  128103  128109  128115  128119  128121  128125  128131  128133  128139  128143  128145  128149  128151  128155  128157  128159  128160  128161  128163  128164  128165  128167  128169  128173  128175  128179  128181  128185  128191  128193  128199  128203  128205  128209  128215  128221  128223  128229  128233  128235  128241  128245  128251  128259  366461 

科目: 来源:第27章《二次函数》中考题集(22):27.3 实践与探索(解析版) 题型:解答题

某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y(件)与销售单价x(元)符合一次函数y=kx+b,且x=65时,y=55;x=75时,y=45.
(1)求一次函数y=kx+b的表达式;
(2)若该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?
(3)若该商场获得利润不低于500元,试确定销售单价x的范围.

查看答案和解析>>

科目: 来源:第27章《二次函数》中考题集(22):27.3 实践与探索(解析版) 题型:解答题

春节期间某水库养殖场为适应市场需求,连续用20天时间,采用每天降低水位以减少捕捞成本的办法,对水库中某种鲜鱼进行捕捞、销售.九(1)班数学建模兴趣小组根据调查,整理出第x天(1≤x≤20且x为整数)的捕捞与销售的相关信息如表:
鲜鱼销售单价(元/kg)20
单位捕捞成本(元/kg)5-
捕捞量(kg)950-10x
(1)在此期间该养殖场每天的捕捞量与前一天末的捕捞量相比是如何变化的?
(2)假定该养殖场每天捕捞和销售的鲜鱼没有损失,且能在当天全部售出,求第x天的收入y(元)与x(天)之间的函数关系式?(当天收入=日销售额-日捕捞成本)
(3)试说明(2)中的函数y随x的变化情况,并指出在第几天y取得最大值,最大值是多少?

查看答案和解析>>

科目: 来源:第27章《二次函数》中考题集(22):27.3 实践与探索(解析版) 题型:解答题

面对国际金融危机.某铁路旅行社为吸引市民组团去某风景区旅游,现推出如下标准:某单位组织员工去该风景区旅游,设有x人参加,应付旅游费y元.
(1)请写出y与x的函数关系式;
(2)若该单位现有45人,本次旅游至少去26人,则该单位最多应付旅游费多少元?
 人数 不超过25人超过25人但不超过50人 超过50人 
 人均旅游费 1500元每增加1人,人均旅游费降低20元 1000元 

查看答案和解析>>

科目: 来源:第27章《二次函数》中考题集(22):27.3 实践与探索(解析版) 题型:解答题

某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.
(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)
(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?

查看答案和解析>>

科目: 来源:第27章《二次函数》中考题集(22):27.3 实践与探索(解析版) 题型:解答题

某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.
(1)求y与x的函数关系式并直接写出自变量x的取值范围;
(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?
(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?

查看答案和解析>>

科目: 来源:第27章《二次函数》中考题集(22):27.3 实践与探索(解析版) 题型:解答题

种植能手小李的实验田可种植A种作物或B种作物(A、B两种作物不能同时种植),原来的种植情况如表.通过参加农业科技培训,小李提高了种植技术.现准备在原有的基础上增种,以提高总产量.但根据科学种植的经验,每增种1棵A种或B种作物,都会导致单棵作物平均产量减少0.2千克,而且每种作物的增种数量都不能超过原有数量的80%.设A种作物增种m棵,总产量为yA千克;B种作物增种n棵,总产量为yB千克.
种植品种
数量
A种作物B中作物
原种植量(棵)5060
原产量(千克/棵)3026
(1)A种作物增种m棵后,单棵平均产量为______千克;B种作物增种n棵后,单棵平均产量为______千克;
(2)求yA与m之间的函数关系式及yB与n之间的函数关系式;
(3)求提高种植技术后,小李增种何种作物可获得最大总产量?最大总产量是多少千克?

查看答案和解析>>

科目: 来源:第27章《二次函数》中考题集(22):27.3 实践与探索(解析版) 题型:解答题

某批发市场批发甲、乙两种水果,根据以往经验和市场行情,预计夏季某一段时间内,甲种水果的销售利润y(万元)与进货量x(吨)近似满足函数关系y=0.3x;乙种水果的销售利润y(万元)与进货量x(吨)近似满足函数关系y=ax2+bx(其中a≠0,a,b为常数),且进货量x为1吨时,销售利润y为1.4万元;进货量x为2吨时,销售利润y为2.6万元.
(1)求y(万元)与x(吨)之间的函数关系式.
(2)如果市场准备进甲、乙两种水果共10吨,设乙种水果的进货量为t吨,请你写出这两种水果所获得的销售利润之和W(万元)与t(吨)之间的函数关系式.并求出这两种水果各进多少吨时获得的销售利润之和最大,最大利润是多少?

查看答案和解析>>

科目: 来源:第27章《二次函数》中考题集(22):27.3 实践与探索(解析版) 题型:解答题

为把产品打入国际市场,某企业决定从下面两个投资方案中选择一个进行投资生产.方案一:生产甲产品,每件产品成本为a万美元(a为常数,且3<a<8),每件产品销售价为10万美元,每年最多可生产200件;方案二:生产乙产品,每件产品成本为8万美元,每件产品销售价为18万美元,每年最多可生产120件.另外,年销售x件乙产品时需上交0.05x2万美元的特别关税.在不考虑其它因素的情况下:
(1)分别写出该企业两个投资方案的年利润y1、y2与相应生产件数x(x为正整数)之间的函数关系式,并指出自变量的取值范围;
(2)分别求出这两个投资方案的最大年利润;
(3)如果你是企业决策者,为了获得最大收益,你会选择哪个投资方案?

查看答案和解析>>

科目: 来源:第27章《二次函数》中考题集(22):27.3 实践与探索(解析版) 题型:解答题

如图,等腰梯形花圃ABCD的底边AD靠墙,另三边用长为40米的铁栏杆围成,设该花圃的腰AB的长为x米.
(1)请求出底边BC的长(用含x的代数式表示);
(2)若∠BAD=60°,该花圃的面积为S米2
①求S与x之间的函数关系式(要指出自变量x的取值范围),并求当S=93时x的值;
②如果墙长为24米,试问S有最大值还是最小值?这个值是多少?

查看答案和解析>>

科目: 来源:第27章《二次函数》中考题集(22):27.3 实践与探索(解析版) 题型:解答题

某水产品养殖企业为指导该企业某种水产品的养殖和销售,对历年市场行情和水产品养殖情况进行了调查.调查发现这种水产品的每千克售价y1(元)与销售月份x(月)满足关系式y=-x+36,而其每千克成本y2(元)与销售月份x(月)满足的函数关系如图所示.
(1)试确定b、c的值;
(2)求出这种水产品每千克的利润y(元)与销售月份x(月)之间的函数关系式;
(3)“五•一”之前,几月份出售这种水产品每千克的利润最大?最大利润是多少?

查看答案和解析>>

同步练习册答案