相关习题
 0  128391  128399  128405  128409  128415  128417  128421  128427  128429  128435  128441  128445  128447  128451  128457  128459  128465  128469  128471  128475  128477  128481  128483  128485  128486  128487  128489  128490  128491  128493  128495  128499  128501  128505  128507  128511  128517  128519  128525  128529  128531  128535  128541  128547  128549  128555  128559  128561  128567  128571  128577  128585  366461 

科目: 来源:第1章《解直角三角形》中考题集(26):1.3 解直角三角形(解析版) 题型:解答题

如图,A、B、C表示建筑在一座比较险峻的名山上的三个缆车站的位置,AB、BC表示连接三个缆车站的钢缆.已知A、B、C所处位置的海拔高度分别为124m、400m、1000m,如图建立直角坐标系,即A(a,124)、B(b,400),C(c,1100),若直线AB的解析式为y=x+4,直线BC与水平线BC1的交角为45度.
(1)分别求出A、B、C三个缆车站所在位置的坐标;
(2)求缆车从B站出发到达C站单向运行的距离.(精确到1m).

查看答案和解析>>

科目: 来源:第1章《解直角三角形》中考题集(26):1.3 解直角三角形(解析版) 题型:解答题

从甲、乙两题中选做一题即可.如果两题都做,只以甲题计分.
题甲:如图,反比例函数的图象与一次函数y=mx+b的图象交于A(1,3),B(n,-1)两点.
(1)求反比例函数与一次函数的解析式;
(2)根据图象回答:当x取何值时,反比例函数的值大于一次函数的值.

题乙:如图,在矩形ABCD中,AB=4,AD=10.直角尺的直角顶点P在AD上滑动时(点P与A,D不重合),一直角边经过点C,另一直角边AB交于点E.我们知道,结论“Rt△AEP∽Rt△DPC”成立.
(1)当∠CPD=30°时,求AE的长;
(2)是否存在这样的点P,使△DPC的周长等于△AEP周长的2倍?若存在,求出DP的长;若不存在,请说明理由.
我选做的是______.

查看答案和解析>>

科目: 来源:第1章《解直角三角形》中考题集(26):1.3 解直角三角形(解析版) 题型:解答题

已知直角梯形纸片OABC在平面直角坐标系中的位置如图所示,四个顶点的坐标分别为O(0,0),A(10,0),B(8,2),C(0,2),点T在线段OA上(不与线段端点重合),将纸片折叠,使点A落在射线AB上(记为点A′),折痕经过点T,折痕TP与射线AB交于点P,设点T的横坐标为t,折叠后纸片重叠部分(图中的阴影部分)的面积为S.
(1)求∠OAB的度数,并求当点A′在线段AB上时,S关于t的函数关系式;
(2)当纸片重叠部分的图形是四边形时,求t的取值范围;
(3)S存在最大值吗?若存在,求出这个最大值,并求此时t的值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:第1章《解直角三角形》中考题集(26):1.3 解直角三角形(解析版) 题型:解答题

如图,矩形ABCD中,AB=8,BC=10,点P在矩形的边DC上由D向C运动.沿直线AP翻折△ADP,形成如下四种情形.设DP=x,△ADP和矩形重叠部分(阴影)的面积为y.

(1)如图丁,当点P运动到与C重合时,求重叠部分的面积y;
(2)如图乙,当点P运动到何处时,翻折△ADP后,点D恰好落在BC边上这时重叠部分的面积y等于多少?
(3)阅读材料:已知锐角α≠45°,tan2α是角2α的正切值,它可以用角α的正切值tanα来表示,即(α≠45°).根据上述阅读材料,求出用x表示y的解析式,并指出x的取值范围.
(提示:在图丙中可设∠DAP=a)

查看答案和解析>>

科目: 来源:第1章《解直角三角形》中考题集(26):1.3 解直角三角形(解析版) 题型:解答题

在矩形ABCD中,点E是AD边上一点,连接BE,且∠ABE=30°,BE=DE,连接BD.点P从点E出发沿射线ED运动,过点P作PQ∥BD交直线BE于点Q.
(1)当点P在线段ED上时(如图1),求证:BE=PD+PQ;
(2)若BC=6,设PQ长为x,以P、Q、D三点为顶点所构成的三角形面积为y,求y与x的函数关系式(不要求写出自变量x的取值范围);
(3)在②的条件下,当点P运动到线段ED的中点时,连接QC,过点P作PF⊥QC,垂足为F,PF交对角线BD于点G(如图2),求线段PG的长.

查看答案和解析>>

科目: 来源:第1章《解直角三角形》中考题集(26):1.3 解直角三角形(解析版) 题型:解答题

将一个正方形纸板(如图-)沿虚线剪下,得到七块几何图形的纸板(其中①③⑤⑥⑦是等腰直角三角形,②是正方形)我们把这七块纸板叫做七巧板.现用七巧板拼出一个图形,其空隙部分是一个箭头(如图二).

(1)请在图二中用实线画出拼图的痕迹(如实线DP);
(2)如果图一中大正方形纸板的边长为10,计算图二中“箭头”的面积(即封闭平面图形ABCDEFG的面积).

查看答案和解析>>

科目: 来源:第1章《解直角三角形》中考题集(26):1.3 解直角三角形(解析版) 题型:解答题

如图,已知线段AB,分别以A、B为圆心,大于AB长为半径画弧,两弧相交于点C、Q,连接CQ与AB相交于点D,连接AC,BC.那么:
(1)∠ADC=______度;
(2)当线段AB=4,∠ACB=60°时,∠ACD=30度,△ABC的面积等于______

查看答案和解析>>

科目: 来源:第1章《解直角三角形》中考题集(27):1.3 解直角三角形(解析版) 题型:解答题

探究问题:
(1)阅读理解:
①如图(A),在已知△ABC所在平面上存在一点P,使它到三角形顶点的距离之和最小,则称点P为△ABC的费马点,此时PA+PB+PC的值为△ABC的费马距离;
②如图(B),若四边形ABCD的四个顶点在同一圆上,则有AB•CD+BC•DA=AC•BD.此为托勒密定理;

(2)知识迁移:
①请你利用托勒密定理,解决如下问题:
如图(C),已知点P为等边△ABC外接圆的上任意一点.求证:PB+PC=PA;
②根据(2)①的结论,我们有如下探寻△ABC(其中∠A、∠B、∠C均小于120°)的费马点和费马距离的方法:
第一步:如图(D),在△ABC的外部以BC为边长作等边△BCD及其外接圆;
第二步:在上任取一点P′,连接P′A、P′B、P′C、P′D.易知P′A+P′B+P′C=P′A+(P′B+P′C)=P′A+______;
第三步:请你根据(1)①中定义,在图(D)中找出△ABC的费马点P,并请指出线段______的长度即为△ABC的费马距离.

(3)知识应用:
2010年4月,我国西南地区出现了罕见的持续干旱现象,许多村庄出现了人、畜饮水困难,为解决老百姓的饮水问题,解放军某部来到云南某地打井取水.
已知三村庄A、B、C构成了如图(E)所示的△ABC(其中∠A、∠B、∠C均小于120°),现选取一点P打水井,使从水井P到三村庄A、B、C所铺设的输水管总长度最小,求输水管总长度的最小值.

查看答案和解析>>

科目: 来源:第1章《解直角三角形》中考题集(27):1.3 解直角三角形(解析版) 题型:解答题

如图1,在△ABC中,∠ACB=90°,∠CAB=30°,△ABD是等边三角形,E是AB的中点,连接CE并延长交AD于F.
(1)求证:①△AEF≌△BEC;②四边形BCFD是平行四边形;
(2)如图2,将四边形ACBD折叠,使D与C重合,HK为折痕,求sin∠ACH的值.

查看答案和解析>>

科目: 来源:第1章《解直角三角形》中考题集(27):1.3 解直角三角形(解析版) 题型:解答题

如图,已知P为∠AOB的边OA上的一点,以P为顶点的∠MPN的两边分别交射线OB于M、N两点,且∠MPN=∠AOB=α(α为锐角).当∠MPN以点P为旋转中心,PM边与PO重合的位置开始,按逆时针方向旋转(∠MPN保持不变)时,M、N两点在射线OB上同时以不同的速度向右平行移动.设OM=x,ON=y(y>x>0),△POM的面积为S.若sinα=,OP=2.
(1)当∠MPN旋转30°(即∠OPM=30°)时,求点N移动的距离;
(2)求证:△OPN∽△PMN;
(3)写出y与x之间的关系式;
(4)试写出S随x变化的函数关系式,并确定S的取值范围.

查看答案和解析>>

同步练习册答案