相关习题
 0  129033  129041  129047  129051  129057  129059  129063  129069  129071  129077  129083  129087  129089  129093  129099  129101  129107  129111  129113  129117  129119  129123  129125  129127  129128  129129  129131  129132  129133  129135  129137  129141  129143  129147  129149  129153  129159  129161  129167  129171  129173  129177  129183  129189  129191  129197  129201  129203  129209  129213  129219  129227  366461 

科目: 来源:第26章《圆》中考题集(08):26.1 旋转(解析版) 题型:解答题

如图,把正方形ACFG与Rt△ACB按如图(甲)所示重叠在一起,其中AC=2,∠BAC=60°,若把Rt△ACB绕直角顶点C按顺时针方向旋转,使斜边AB恰好经过正方形ACFG的顶点F,得△A′B′C′,A B分别与A′C,A′B′相交于D、E,如图(乙)所示.
①△ACB至少旋转多少度才能得到△A′B′C′?说明理由;
②求△ACB与△A′B′C′的重叠部分(即四边形CDEF)的面积(若取近似值,则精确到0.1)?

查看答案和解析>>

科目: 来源:第26章《圆》中考题集(08):26.1 旋转(解析版) 题型:解答题

如图,在方格纸(每个小方格都是边长为1个单位长度的正方形)中,我们称每个小正方形的顶点为格点,以格点为顶点的图形称为格点图形.如图中的△ABC称为格点△ABC.
(1)如果A、D两点的坐标分别是(1,1)和(0,-1),请你在方格纸中建立平面直角坐标系,并直接写出点B、点C的坐标;
(2)请根据你所学过的平移、旋转或轴对称等知识,说明图中“格点四边形图案”是如何通过“格点△ABC图案”变换得到的.

查看答案和解析>>

科目: 来源:第26章《圆》中考题集(08):26.1 旋转(解析版) 题型:解答题

如图,在等腰Rt△ABC中,P是斜边BC的中点,以P为顶点的直角的两边分别与边AB,AC交于点E,F,连接EF.当∠EPF绕顶点P旋转时(点E不与A,B重合),△PEF也始终是等腰直角三角形,请你说明理由.

查看答案和解析>>

科目: 来源:第26章《圆》中考题集(08):26.1 旋转(解析版) 题型:解答题

如图,在Rt△ABC和Rt△DEF中,∠ABC=90°,AB=4,BC=6,∠DEF=90°,DE=EF=4.
(1)移动△DEF,使边DE与AB重合(如图1),再将△DEF沿AB所在直线向左平移,使点F落在AC上(如图2),求BE的长;
(2)将图2中的△DEF绕点A顺时针旋转,使点F落在BC上,连接AF(如图3).请找出图中的全等三角形,并说明它们全等的理由.(不再添加辅助线,不再标注其它字母)

查看答案和解析>>

科目: 来源:第26章《圆》中考题集(08):26.1 旋转(解析版) 题型:解答题

如图1,一等腰直角三角尺GEF的两条直角边与正方形ABCD的两条边分别重合在一起.现正方形ABCD保持不动,将三角尺GEF绕斜边EF的中点O(点O也是BD中点)按顺时针方向旋转.
(1)如图2,当EF与AB相交于点M,GF与BD相交于点N时,通过观察或测量BM,FN的长度,猜想BM,FN满足的数量关系,并证明你的猜想;
(2)若三角尺GEF旋转到如图3所示的位置时,线段FE的延长线与AB的延长线相交于点M,线段BD的延长线与GF的延长线相交于点N,此时,(1)中的猜想还成立吗?若成立,请证明;若不成立,请说明理由.

查看答案和解析>>

科目: 来源:第26章《圆》中考题集(08):26.1 旋转(解析版) 题型:解答题

在△ABC中,AB=BC,将△ABC绕点A沿顺时针方向旋转得△A1B1C1,使点Cl落在直线BC上(点Cl与点C不重合),
(1)如图,当∠C>60°时,写出边ABl与边CB的位置关系,并加以证明;
(2)当∠C=60°时,写出边ABl与边CB的位置关系(不要求证明);
(3)当∠C<60°时,请你在如图中用尺规作图法作出△AB1C1(保留作图痕迹,不写作法),再猜想你在(1)、(2)中得出的结论是否还成立并说明理由.

查看答案和解析>>

科目: 来源:第26章《圆》中考题集(08):26.1 旋转(解析版) 题型:解答题

正方形ABCD和正方形AEFG有一公共点A,点G.E分别在线段AD、AB上(如图(1)所示),连接DF、BF.
(1)求证:DF=BF,
(2)若将正方形AEFG绕点A按顺时针方向旋转,连接DG、BE(如图(2)所示),在旋转过程中,请猜想线段DG、BE始终有什么数量关系和位置关系并证明你的猜想.

查看答案和解析>>

科目: 来源:第26章《圆》中考题集(08):26.1 旋转(解析版) 题型:解答题

将两块含30°角且大小相同的直角三角板如图1摆放.

(1)将图1中△A1B1C绕点C顺时针旋转45°得图2,点P1是A1C与AB的交点,求证:CP1=AP1
(2)将图2中△A1B1C绕点C顺时针旋转30°到△A2B2C(如图3),点P2是A2C与AB的交点.线段CP1与P1P2之间存在一个确定的等量关系,请你写出这个关系式并说明理由;
(3)将图3中线段CP1绕点C顺时针旋转60°到CP3(如图4),连接P3P2,求证:P3P2⊥AB.

查看答案和解析>>

科目: 来源:第26章《圆》中考题集(08):26.1 旋转(解析版) 题型:解答题

如图a,△ABC和△CEF是两个大小不等的等边三角形,且有一个公共顶点C,连接AF和BE.
(1)线段AF和BE有怎样的大小关系?请证明你的结论;
(2)将图a中的△CEF绕点C旋转一定的角度,得到图b,这时(1)中的结论还成立吗?作出判断并说明理由;
(3)若将图a中的△ABC绕点C旋转一定的角度,请你画出一个变换后的图形(草图即可),(1)中的结论还成立吗?作出判断不必说明理由;
(4)根据以上证明、说理、画图,归纳你的发现.

查看答案和解析>>

科目: 来源:第26章《圆》中考题集(08):26.1 旋转(解析版) 题型:解答题

如图,平面直角坐标系中,△ABC为等边三角形,其中点A、B、C的坐标分别为(-3,-1)、(-3,-3)、(-3+,-2).现以y轴为对称轴作△ABC的对称图形,得△A1B1C1,再以x轴为对称轴作△A1B1C1的对称图形,得△A2B2C2
(1)直接写出点C1、C2的坐标;
(2)能否通过一次旋转将△ABC旋转到△A2B2C2的位置?你若认为能,请作出肯定的回答,并直接写出所旋转的度数;你若认为不能,请作出否定的回答(不必说明理由);
(3)设当△ABC的位置发生变化时,△A2B2C2、△A1B1C1与△ABC之间的对称关系始终保持不变.
①当△ABC向上平移多少个单位时,△A1B1C1与△A2B2C2完全重合并直接写出此时点C的坐标;
②将△ABC绕点A顺时针旋转α°(0≤α≤180),使△A1B1C1与△A2B2C2完全重合,此时α的值为多少点C的坐标又是什么?

查看答案和解析>>

同步练习册答案