相关习题
 0  129037  129045  129051  129055  129061  129063  129067  129073  129075  129081  129087  129091  129093  129097  129103  129105  129111  129115  129117  129121  129123  129127  129129  129131  129132  129133  129135  129136  129137  129139  129141  129145  129147  129151  129153  129157  129163  129165  129171  129175  129177  129181  129187  129193  129195  129201  129205  129207  129213  129217  129223  129231  366461 

科目: 来源:第26章《圆》中考题集(07):26.1 旋转(解析版) 题型:解答题

如图1,已知正方形ABCD的边CD在正方形DEFG的边DE上,连接AE,GC.

(1)试猜想AE与GC有怎样的位置关系,并证明你的结论;
(2)将正方形DEFG绕点D按顺时针方向旋转,使点E落在BC边上,如图2,连接AE和GC.你认为(1)中的结论是否还成立?若成立,给出证明;若不成立,请说明理由.

查看答案和解析>>

科目: 来源:第26章《圆》中考题集(07):26.1 旋转(解析版) 题型:解答题

如图所示,正方形ABCD中,E是CD上一点,F在CB的延长线上,且DE=BF.
(1)求证:△ADE≌△ABF;
(2)问:将△ADE顺时针旋转多少度后与△ABF重合,旋转中心是什么?

查看答案和解析>>

科目: 来源:第26章《圆》中考题集(07):26.1 旋转(解析版) 题型:解答题

如图1,在△ABC中,AB=BC,P为AB边上一点,连接CP,以PA、PC为邻边作?APCD,AC与PD相交于点E,已知∠ABC=∠AEP=α(0°<α<90°).
(1)求证:∠EAP=∠EPA;
(2)?APCD是否为矩形?请说明理由;
(3)如图2,F为BC中点,连接FP,将∠AEP绕点E顺时针旋转适当的角度,得到∠MEN(点M、N分别是∠MEN的两边与BA、FP延长线的交点).猜想线段EM与EN之间的数量关系,并证明你的结论.

查看答案和解析>>

科目: 来源:第26章《圆》中考题集(07):26.1 旋转(解析版) 题型:解答题

如图,将正方形ABCD中的△ABD绕对称中心O旋转至△GEF的位置,EF交AB于M,GF交BD于N.请猜想BM与FN有怎样的数量关系?并证明你的结论.

查看答案和解析>>

科目: 来源:第26章《圆》中考题集(07):26.1 旋转(解析版) 题型:解答题

平面内有一等腰直角三角板(∠ACB=90°)和一直线MN.过点C作CE⊥MN于点E,过点B作BF⊥MN于点F.当点E与点A重合时(如图1),易证:AF+BF=2CE.当三角板绕点A顺时针旋转至图2、图3的位置时,上述结论是否仍然成立?若成立,请给予证明;若不成立,线段AF、BF、CE之间又有怎样的数量关系,请直接写出你的猜想,不需证明.

查看答案和解析>>

科目: 来源:第26章《圆》中考题集(07):26.1 旋转(解析版) 题型:解答题

如图,在直角坐标系中,已知点M的坐标为(1,0),将线段OM绕原点O沿逆时针方向旋转45°,再将其延长到M1,使得M1M⊥OM,得到线段OM1;又将线段OM1绕原点O沿逆时针方向旋转45°,再将其延长到M2,使得M2M1⊥OM1,得到线段OM2,如此下去,得到线段OM3,OM4,…,OMn
(1)写出点M5的坐标;
(2)求△M5OM6的周长;
(3)我们规定:把点Mn(xn,yn)(n=0,1,2,3…)的横坐标xn,纵坐标yn都取绝对值后得到的新坐标(|xn|,|yn|)称之为点Mn的“绝对坐标”.根据图中点Mn的分布规律,请你猜想点Mn的“绝对坐标”,并写出来.

查看答案和解析>>

科目: 来源:第26章《圆》中考题集(07):26.1 旋转(解析版) 题型:解答题

如图,在Rt△OAB中,∠OAB=90°,OA=AB=6,将△OAB绕点O沿逆时针方向旋转90°得到△OA1B1
(1)线段OA1的长是______,∠AOB1的度数是______;
(2)连接AA1,求证:四边形OAA1B1是平行四边形;
(3)求四边形OAA1B1的面积.

查看答案和解析>>

科目: 来源:第26章《圆》中考题集(07):26.1 旋转(解析版) 题型:解答题

如图所示,在Rt△ABC中,∠ABC=90度.将Rt△ABC绕点C顺时针方向旋转60°得到△DEC,点E在AC上,再将Rt△ABC沿着AB所在直线翻转180°得到△ABF.连接AD.
(1)求证:四边形AFCD是菱形;
(2)连接BE并延长交AD于G,连接CG,请问:四边形ABCG是什么特殊平行四边形,为什么?

查看答案和解析>>

科目: 来源:第26章《圆》中考题集(07):26.1 旋转(解析版) 题型:解答题

如图①,已知△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点.作正方形DEFG,使点A,C分别在DG和DE上,连接AE,BG.
(1)试猜想线段BG和AE的数量关系,请直接写出你得到的结论;
(2)将正方形DEFG绕点D逆时针方向旋转一定角度后(旋转角度大于0°,小于或等于360°),如图②,通过观察或测量等方法判断(1)中的结论是否仍然成立?如果成立,请予以证明;如果不成立,请说明理由;
(3)若BC=DE=2,在(2)的旋转过程中,当AE为最大值时,求AF的值.

查看答案和解析>>

科目: 来源:第26章《圆》中考题集(07):26.1 旋转(解析版) 题型:解答题

已知Rt△ABC中,AC=BC,∠C=90°,D为AB边的中点,∠EDF=90°,∠EDF绕D点旋转,它的两边分别交AC、CB(或它们的延长线)于E、F.
(1)当∠EDF绕D点旋转到DE⊥AC于E时(如图1),易证S△DEF+S△CEF=S△ABC
(2)当∠EDF绕D点旋转到DE和AC不垂直时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,S△DEF、S△CEF、S△ABC又有怎样的数量关系?请写出你的猜想,不需证明.

查看答案和解析>>

同步练习册答案