相关习题
 0  129361  129369  129375  129379  129385  129387  129391  129397  129399  129405  129411  129415  129417  129421  129427  129429  129435  129439  129441  129445  129447  129451  129453  129455  129456  129457  129459  129460  129461  129463  129465  129469  129471  129475  129477  129481  129487  129489  129495  129499  129501  129505  129511  129517  129519  129525  129529  129531  129537  129541  129547  129555  366461 

科目: 来源:第27章《相似》常考题集(14):27.2 相似三角形(解析版) 题型:解答题

如图,在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,BD与AE、AF分别相交于G、H.
(1)求证:△ABE∽△ADF;
(2)若AG=AH,求证:四边形ABCD是菱形.

查看答案和解析>>

科目: 来源:第27章《相似》常考题集(14):27.2 相似三角形(解析版) 题型:解答题

如图1,在△ABC中,AB=BC=5,AC=6.△ECD是△ABC沿BC方向平移得到的,连接AE.AC和BE相交于点O.
(1)判断四边形ABCE是怎样的四边形,说明理由;
(2)如图2,P是线段BC上一动点(图2),(不与点B、C重合),连接PO并延长交线段AB于点Q,QR⊥BD,垂足为点R.
①四边形PQED的面积是否随点P的运动而发生变化?若变化,请说明理由;若不变,求出四边形PQED的面积;
②当线段BP的长为何值时,△PQR与△BOC相似.

查看答案和解析>>

科目: 来源:第27章《相似》常考题集(14):27.2 相似三角形(解析版) 题型:解答题

如图1,半圆O为△ABC的外接半圆,AC为直径,D为上的一动点.
(1)问添加一个什么条件后,能使得?请说明理由;
(2)若AB∥OD,点D所在的位置应满足什么条件?请说明理由;
(3)如图2,在(1)和(2)的条件下,四边形AODB是什么特殊的四边形?证明你的结论.

查看答案和解析>>

科目: 来源:第27章《相似》常考题集(14):27.2 相似三角形(解析版) 题型:解答题

(根据课本习题改编)如图1,在△ABC中,∠C=90°,AC=4,BC=3,四边形DEFG为△ABC的内接正方形,若设正方形的边长为x,容易算出x的长为
探究与计算:
(1)如图2,若三角形内有并排的两个全等的正方形,它们组成的矩形内接于△ABC,则正方形的边长为______;
(2)如图3,若三角形内有并排的三个全等的正方形,它们组成的矩形内接于△ABC,则正方形的边长为______;
(3)如图4,若三角形内有并排的n个全等的正方形,它们组成的矩形内接于△ABC,请你猜想正方形的边长是多少?并对你的猜想进行证明.

查看答案和解析>>

科目: 来源:第27章《相似》常考题集(14):27.2 相似三角形(解析版) 题型:解答题

如图,在矩形ABCD中,AB=4,AD=10,直角尺的直角顶点P在AD上滑动时(点P与A,D不重合),一直角边经过点C,另一直角边AB交于点E,我们知道,结论“Rt△AEP∽Rt△DPC”成立.
(1)当∠CPD=30°时,求AE的长;
(2)是否存在这样的点P,使△DPC的周长等于△AEP周长的2倍?若存在,求出DP的长;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:第27章《相似》常考题集(14):27.2 相似三角形(解析版) 题型:解答题

如图①,四边形ABCD是正方形,点G是BC上任意一点,DE⊥AG于点E,BF⊥AG于点F.
(1)求证:DE-BF=EF;
(2)当点G为BC边中点时,试探究线段EF与GF之间的数量关系,并说明理由;
(3)若点G为CB延长线上一点,其余条件不变.请你在图②中画出图形,写出此时DE、BF、EF之间的数量关系(不需要证明).

查看答案和解析>>

科目: 来源:第27章《相似》常考题集(14):27.2 相似三角形(解析版) 题型:解答题

如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连接BG,DE.我们探究下列图中线段BG、线段DE的长度关系及所在直线的位置关系:
(1)①猜想如图1中线段BG、线段DE的长度关系及所在直线的位置关系;
②将图1中的正方形CEFG绕着点C按顺时针(或逆时针)方向旋转任意角度α,得到如图2,如图3情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并选取图2证明你的判断;

(2)将原题中正方形改为矩形(如图4-6),且AB=a,BC=b,CE=ka,CG=kb(a≠b,k>0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图5为例简要说明理由;

(3)在第(2)题图5中,连接DG、BE,且a=3,b=2,k=,求BE2+DG2的值.

查看答案和解析>>

科目: 来源:第27章《相似》常考题集(14):27.2 相似三角形(解析版) 题型:解答题

如图,在边长为4的正方形ABCD中,点P在AB上从A向B运动,连接DP交AC于点Q.
(1)试证明:无论点P运动到AB上何处时,都有△ADQ≌△ABQ;
(2)当点P在AB上运动到什么位置时,△ADQ的面积是正方形ABCD面积的
(3)若点P从点A运动到点B,再继续在BC上运动到点C,在整个运动过程中,当点P运动到什么位置时,△ADQ恰为等腰三角形.

查看答案和解析>>

科目: 来源:第27章《相似》常考题集(14):27.2 相似三角形(解析版) 题型:解答题

如图:四边形ABCD中,E、F、G、H分别为各边的中点,顺次连接E、F、G、H,把四边形EFGH称为中点四边形.连接AC、BD,容易证明:中点四边形EFGH一定是平行四边形.
(1)如果改变原四边形ABCD的形状,那么中点四边形的形状也随之改变,通过探索可以发现:当四边形ABCD的对角线满足AC=BD时,四边形EFGH为菱形.
当四边形ABCD的对角线满足______时,四边形EFGH为矩形;
当四边形ABCD的对角线满足______时,四边形EFGH为正方形;
(2)探索三角形AEH、三角形CFG与四边形ABCD的面积之间的等量关系,请写出你发现的结论,并加以证明;
(3)如果四边形ABCD的面积为2,那么中点四边形EFGH的面积是多少?

查看答案和解析>>

科目: 来源:第27章《相似》常考题集(14):27.2 相似三角形(解析版) 题型:解答题

如图,矩形ABCD中,AD=3厘米,AB=a厘米(a>3).动点M,N同时从B点出发,分别沿B?A,B?C运动,速度是1厘米/秒.过M作直线垂直于AB,分别交AN,CD于P,Q.当点N到达终点C时,点M也随之停止运动.设运动时间为t秒.
(1)若a=4厘米,t=1秒,则PM=______厘米;
(2)若a=5厘米,求时间t,使△PNB∽△PAD,并求出它们的相似比;
(3)若在运动过程中,存在某时刻使梯形PMBN与梯形PQDA的面积相等,求a的取值范围;
(4)是否存在这样的矩形:在运动过程中,存在某时刻使梯形PMBN,梯形PQDA,梯形PQCN的面积都相等?若存在,求a的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案