相关习题
 0  129460  129468  129474  129478  129484  129486  129490  129496  129498  129504  129510  129514  129516  129520  129526  129528  129534  129538  129540  129544  129546  129550  129552  129554  129555  129556  129558  129559  129560  129562  129564  129568  129570  129574  129576  129580  129586  129588  129594  129598  129600  129604  129610  129616  129618  129624  129628  129630  129636  129640  129646  129654  366461 

科目: 来源:第27章《相似》中考题集(03):27.1 图形的相似(解析版) 题型:解答题

如图1,已知四边形ABCD是菱形,G是线段CD上的任意一点时,连接BG交AC于F,过F作FH∥CD交BC于H,可以证明结论成立.(考生不必证明)
(1)探究:如图2,上述条件中,若G在CD的延长线上,其它条件不变时,其结论是否成立?若成立,请给出证明;若不成立,请说明理由;
(2)计算:若菱形ABCD中AB=6,∠ADC=60°,G在直线CD上,且CG=16,连接BG交AC所在的直线于F,过F作FH∥CD交BC所在的直线于H,求BG与FG的长.
(3)发现:通过上述过程,你发现G在直线CD上时,结论还成立吗?

查看答案和解析>>

科目: 来源:第27章《相似》中考题集(03):27.1 图形的相似(解析版) 题型:解答题

数学课上,李老师出示了这样一道题目:如图1,正方形ABCD的边长为12,P为边BC延长线上的一点,E为DP的中点,DP的垂直平分线交边DC于M,交边AB的延长线于N.当CP=6时,EM与EN的比值是多少?
经过思考,小明展示了一种正确的解题思路:过E作直线平行于BC交DC,AB分别于F,G,如图2,则可得:,因为DE=EP,所以DF=FC.可求出EF和EG的值,进而可求得EM与EN的比值.
(1)请按照小明的思路写出求解过程.
(2)小东又对此题作了进一步探究,得出了DP=MN的结论,你认为小东的这个结论正确吗?如果正确,请给予证明;如果不正确,请说明理由.

查看答案和解析>>

科目: 来源:第27章《相似》中考题集(03):27.1 图形的相似(解析版) 题型:解答题

如图,在直角梯形OABC中,OA∥CB,A、B两点的坐标分别为A(15,0),B(10,12),动点P、Q分别从O、B两点出发,点P以每秒2个单位的速度沿OA向终点A运动,点Q以每秒1个单位的速度沿BC向C运动,当点P停止运动时,点Q也同时停止运动.线段OB、PQ相交于点D,过点D作DE∥OA,交AB于点E,射线QE交x轴于点F.设动点PQ运动时间为t(单位:秒).
(1)当t为何值时,四边形PABQ是等腰梯形,请写出推理过程;
(2)当t=2秒时,求梯形OFBC的面积;
(3)当t为何值时,△PQF是等腰三角形?请写出推理过程.

查看答案和解析>>

科目: 来源:第27章《相似》中考题集(03):27.1 图形的相似(解析版) 题型:解答题

如图所示,AB为⊙O的直径,CD为弦,且CD⊥AB,垂足为H.
(1)如果⊙O的半径为4,,求∠BAC的度数;
(2)若点E为的中点,连接OE,CE.求证:CE平分∠OCD;
(3)在(1)的条件下,圆周上到直线AC距离为3的点有多少个?并说明理由.

查看答案和解析>>

科目: 来源:第27章《相似》中考题集(03):27.1 图形的相似(解析版) 题型:解答题

如图,BD是⊙O的直径,AB与⊙O相切于点B,过点D作OA的平行线交⊙O于点C,AC与BD的延长线相交于点E.
(1)试探究A E与⊙O的位置关系,并说明理由;
(2)已知EC=a,ED=b,AB=c,请你思考后,选用以上适当的数据,设计出计算⊙O的半径r的一种方案:①你选用的已知数是______;②写出求解过程.(结果用字母表示)

查看答案和解析>>

科目: 来源:第27章《相似》中考题集(03):27.1 图形的相似(解析版) 题型:解答题

某校研究性学习小组在研究相似图形时,发现相似三角形的定义、判定及其性质,可以拓展到扇形的相似中去.例如,可以定义:“圆心角相等且半径和弧长对应成比例的两个扇形叫做相似扇形”;相似扇形有性质:弧长比等于半径比、面积比等于半径比的平方….请你协助他们探索这个问题.
(1)写出判定扇形相似的一种方法:若______,则两个扇形相似;
(2)有两个圆心角相等的扇形,其中一个半径为a、弧长为m,另一个半径为2a,则它的弧长为______;
(3)如图1是一完全打开的纸扇,外侧两竹条AB和AC的夹角为120°,AB为30cm,现要做一个和它形状相同、面积是它一半的纸扇(如图2),求新做纸扇(扇形)的圆心角和半径.

查看答案和解析>>

科目: 来源:第27章《相似》中考题集(03):27.1 图形的相似(解析版) 题型:解答题

如图,一扇形纸扇完全打开后,外侧两竹条AB和AC的夹角为θ,θ与360°-θ之比为黄金比(“黄金比“近似地等于O.618),AB长为30cm,贴纸部分的宽BD为20cm,求贴纸部分的面积(π取3.14,结果精确到O.1cm2).

查看答案和解析>>

科目: 来源:第27章《相似》中考题集(03):27.1 图形的相似(解析版) 题型:解答题

将一矩形纸片OABC放在平面直角坐标系中,O(0,0),A(6,0),C(0,3).动点Q从点O出发以每秒1个单位长的速度沿OC向终点C运动,运动秒时,动点P从点A出发以相等的速度沿AO向终点O运动.当其中一点到达终点时,另一点也停止运动.设点P的运动时间为t(秒).
(1)用含t的代数式表示OP,OQ;
(2)当t=1时,如图1,将沿△OPQ沿PQ翻折,点O恰好落在CB边上的点D处,求点D的坐标;
(3)连接AC,将△OPQ沿PQ翻折,得到△EPQ,如图2.问:PQ与AC能否平行?PE与AC能否垂直?若能,求出相应的t值;若不能,说明理由.

查看答案和解析>>

科目: 来源:第27章《相似》中考题集(03):27.1 图形的相似(解析版) 题型:解答题

一般认为,如果一个人的肚脐以上的高度与肚脐以下的高度符合黄金分割,则这个人好看.如图,是一个参加空姐选拔的选手的身高情况,那么她应穿多高的鞋子才能好看?(精确到1cm)
参考数据:黄金分割比为=2.236.

查看答案和解析>>

科目: 来源:第27章《相似》中考题集(03):27.1 图形的相似(解析版) 题型:解答题

宽与长的比是的矩形叫黄金矩形.心理测试表明:黄金矩形令人赏心悦目,它给我们以协调,匀称的美感.现将小波同学在数学活动课中,折叠黄金矩形的方法归纳如下(如图所示):
第一步:作一个正方形ABCD;
第二步:分别取AD,BC的中点M,N,连接MN;
第三步:以N为圆心,ND长为半径画弧,交BC的延长线于E;
第四步:过E作EF⊥AD,交AD的延长线于F.
请你根据以上作法,证明矩形DCEF为黄金矩形.

查看答案和解析>>

同步练习册答案