相关习题
0 129492 129500 129506 129510 129516 129518 129522 129528 129530 129536 129542 129546 129548 129552 129558 129560 129566 129570 129572 129576 129578 129582 129584 129586 129587 129588 129590 129591 129592 129594 129596 129600 129602 129606 129608 129612 129618 129620 129626 129630 129632 129636 129642 129648 129650 129656 129660 129662 129668 129672 129678 129686 366461
科目:
来源:第26章《二次函数》常考题集(20):26.3 实际问题与二次函数(解析版)
题型:解答题
如图,已知直线y=
x+1与y轴交于点A,与x轴交于点D,抛物线y=
x
2+bx+c与直线交于A、E两点,与x轴交于B、C两点,且B点坐标为(1,0).
(1)求该抛物线的解析式;
(2)动点P在x轴上移动,当△PAE是直角三角形时,求点P的坐标P;
(3)在抛物线的对称轴上找一点M,使|AM-MC|的值最大,求出点M的坐标.
查看答案和解析>>
科目:
来源:第26章《二次函数》常考题集(20):26.3 实际问题与二次函数(解析版)
题型:解答题
已知:如图,直线l:y=
x+b,经过点M(0,
),一组抛物线的顶点B
1(1,y
1),B
2(2,y
2),B
3(3,y
3),…,B
n(n,y
n)(n为正整数)依次是直线l上的点,这组抛物线与x轴正半轴的交点依次是:A
1(x
1,0),A
2(x
2,0),A
3(x
3,0),…A
n+1(x
n+1,0),设x
1=d(0<d<1).
(1)求b的值;
(2)求经过点A
1、B
1、A
2的抛物线的解析式(用含d的代数式表示);
(3)定义:若抛物线的顶点与x轴的两个交点构成的三角形是直角三角形,则这种抛物线就称为:“美丽抛物线”.探究:当d(0<d<1)的大小变化时,这组抛物线中是否存在美丽抛物线?若存在,请你求出相应的d的值.
查看答案和解析>>
科目:
来源:第26章《二次函数》常考题集(20):26.3 实际问题与二次函数(解析版)
题型:解答题
如图,抛物线经过A(4,0),B(1,0),C(0,-2)三点.
(1)求出抛物线的解析式;
(2)P是抛物线上一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;
(3)在直线AC上方的抛物线上有一点D,使得△DCA的面积最大,求出点D的坐标.
查看答案和解析>>
科目:
来源:第26章《二次函数》常考题集(20):26.3 实际问题与二次函数(解析版)
题型:解答题
如图,已知抛物线y=x
2+bx+c经过A(1,0),B(0,2)两点,顶点为D.
(1)求抛物线的解析式;
(2)将△OAB绕点A顺时针旋转90°后,点B落到点C的位置,将抛物线沿y轴平移后经过点C,求平移后所得图象的函数关系式;
(3)设(2)中平移后,所得抛物线与y轴的交点为B
1,顶点为D
1,若点N在平移后的抛物线上,且满足△NBB
1的面积是△NDD
1面积的2倍,求点N的坐标.
查看答案和解析>>
科目:
来源:第26章《二次函数》常考题集(20):26.3 实际问题与二次函数(解析版)
题型:解答题
一开口向上的抛物线与x轴交于A(m-2,0),B(m+2,0)两点,记抛物线顶点为C,且AC⊥BC.
(1)若m为常数,求抛物线的解析式;
(2)若m为小于0的常数,那么(1)中的抛物线经过怎么样的平移可以使顶点在坐标原点;
(3)设抛物线交y轴正半轴于D点,问是否存在实数m,使得△BOD为等腰三角形?若存在,求出m的值;若不存在,请说明理由.
查看答案和解析>>
科目:
来源:第26章《二次函数》常考题集(20):26.3 实际问题与二次函数(解析版)
题型:解答题
如图,抛物线y=-x
2+2x+3与x轴相交于A、B两点(点A在点B的左侧),与y轴相交于点C,顶点为D.
(1)直接写出A、B、C三点的坐标和抛物线的对称轴;
(2)连接BC,与抛物线的对称轴交于点E,点P为线段BC上的一个动点,过点P作PF∥DE交抛物线于点F,设点P的横坐标为m;
①用含m的代数式表示线段PF的长,并求出当m为何值时,四边形PEDF为平行四边形?
②设△BCF的面积为S,求S与m的函数关系式.
查看答案和解析>>
科目:
来源:第26章《二次函数》常考题集(20):26.3 实际问题与二次函数(解析版)
题型:解答题
如图,已知二次函数y=x
2-2x-1的图象的顶点为A.二次函数y=ax
2+bx的图象与x轴交于原点O及另一点C,它的顶点B在函数y=x
2-2x-1的图象的对称轴上.
(1)求点A与点C的坐标;
(2)当四边形AOBC为菱形时,求函数y=ax
2+bx的关系式.
查看答案和解析>>
科目:
来源:第26章《二次函数》常考题集(20):26.3 实际问题与二次函数(解析版)
题型:解答题
如图,抛物线y=-x
2+bx+c与x轴交于A(1,0),B(-3,0)两点.
(1)求该抛物线的解析式;
(2)设(1)中的抛物线交y轴与C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由;
(3)在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?若存在,求出点P的坐标及△PBC的面积最大值;若没有,请说明理由.
查看答案和解析>>
科目:
来源:第26章《二次函数》常考题集(20):26.3 实际问题与二次函数(解析版)
题型:解答题
已知:抛物线y=ax
2+bx+c(a≠0)的对称轴为x=-1,与x轴交于A,B两点,与y轴交于点C,其中A(-3,0),C(0,-2)
(1)求这条抛物线的函数表达式;
(2)已知在对称轴上存在一点P,使得△PBC的周长最小.请求出点P的坐标;
(3)若点D是线段OC上的一个动点(不与点O、点C重合).过点D作DE∥PC交x轴于点E.连接PD、PE.设CD的长为m,△PDE的面积为S.求S与m之间的函数关系式.试说明S是否存在最大值?若存在,请求出最大值;若不存在,请说明理由.
查看答案和解析>>
科目:
来源:第26章《二次函数》常考题集(20):26.3 实际问题与二次函数(解析版)
题型:解答题
如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax
2+bx过A、C两点.
(1)直接写出点A的坐标,并求出抛物线的解析式;
(2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E.
①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长?
②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形?请直接写出相应的t值.
查看答案和解析>>