相关习题
 0  129558  129566  129572  129576  129582  129584  129588  129594  129596  129602  129608  129612  129614  129618  129624  129626  129632  129636  129638  129642  129644  129648  129650  129652  129653  129654  129656  129657  129658  129660  129662  129666  129668  129672  129674  129678  129684  129686  129692  129696  129698  129702  129708  129714  129716  129722  129726  129728  129734  129738  129744  129752  366461 

科目: 来源:第26章《二次函数》中考题集(38):26.3 实际问题与二次函数(解析版) 题型:解答题

如图1,设抛物线y=x2-交x轴于A,B两点,顶点为D.以BA为直径作半圆,圆心为M,半圆交y轴负半轴于C.
(1)求抛物线的对称轴;
(2)将△ACB绕圆心M顺时针旋转180°,得到三角形APB,如图2.求点P的坐标;
(3)有一动点Q在线段AB上运动,△QCD的周长在不断变化时是否存在最小值?若存在,求点Q的坐标;若不存在,说明理由.

查看答案和解析>>

科目: 来源:第26章《二次函数》中考题集(38):26.3 实际问题与二次函数(解析版) 题型:解答题

已知抛物线的函数关系式:y=x2+2(a-1)x+a2-2a(其中x是自变量),
(1)若点P(2,3)在此抛物线上,
①求a的值;
②若a>0,且一次函数y=kx+b的图象与此抛物线没有交点,请你写出一个符合条件的一次函数关系式(只需写一个,不要写过程);
(2)设此抛物线与轴交于点A(x1,0)、B(x2,0).若x1<x2,且抛物线的顶点在直线x=的右侧,求a的取值范围.

查看答案和解析>>

科目: 来源:第26章《二次函数》中考题集(38):26.3 实际问题与二次函数(解析版) 题型:解答题

如图,在直角梯形OBCD中,OB=8,BC=1,CD=10.
(1)求C,D两点的坐标;
(2)若线段OB上存在点P,使PD⊥PC,求过D,P,C三点的抛物线的表达式.

查看答案和解析>>

科目: 来源:第26章《二次函数》中考题集(38):26.3 实际问题与二次函数(解析版) 题型:解答题

如图①,在平面直角坐标系中,Rt△AOB≌Rt△CDA,且A(-1,0)、B(0,2),抛物线y=ax2+ax-2经过点C.
(1)求抛物线的解析式;
(2)在抛物线(对称轴的右侧)上是否存在两点P、Q,使四边形ABPQ是正方形?若存在,求点P、Q的坐标,若不存在,请说明理由;
(3)如图②,E为BC延长线上一动点,过A、B、E三点作⊙O′,连接AE,在⊙O′上另有一点F,且AF=AE,AF交BC于点G,连接BF.下列结论:①BE+BF的值不变;②,其中有且只有一个成立,请你判断哪一个结论成立,并证明成立的结论.

查看答案和解析>>

科目: 来源:第26章《二次函数》中考题集(38):26.3 实际问题与二次函数(解析版) 题型:解答题

一园林设计师要使用长度为4L的材料建造如图1所示的花圃,该花圃是由四个形状、大小完全一样的扇环面组成,每个扇环面如图2所示,它是以点O为圆心的两个同心圆弧和延长后通过O点的两条直线段围成,为使得绿化效果最佳,还须使得扇环面积最大.
(1)求使图1花圃面积为最大时R-r的值及此时花圃面积,其中R、r分别为大圆和小圆的半径;
(2)若L=160m,r=10m,求使图2面积为最大时的θ值.

查看答案和解析>>

科目: 来源:第26章《二次函数》中考题集(38):26.3 实际问题与二次函数(解析版) 题型:解答题

已知圆P的圆心在反比例函数y=(k>1)图象上,并与x轴相交于A、B两点.且始终与y轴相切于定点C(0,1).
(1)求经过A、B、C三点的二次函数图象的解析式;
(2)若二次函数图象的顶点为D,问当k为何值时,四边形ADBP为菱形.

查看答案和解析>>

科目: 来源:第26章《二次函数》中考题集(38):26.3 实际问题与二次函数(解析版) 题型:解答题

如图,平面上一点P从点M(,1)出发,沿射线OM方向以每秒1个单位长度的速度作匀速运动,在运动过程中,以OP为对角线的矩形OAPB的边长OA:OB=1:;过点O且垂直于射线OM的直线l与点P同时出发,且与点P沿相同的方向、以相同的速度运动.
(1)在点P运动过程中,试判断AB与y轴的位置关系,并说明理由.
(2)设点P与直线l都运动了t秒,求此时的矩形OAPB与直线l在运动过程中所扫过的区域的重叠部分的面积S.(用含t的代数式表示)

查看答案和解析>>

科目: 来源:第26章《二次函数》中考题集(38):26.3 实际问题与二次函数(解析版) 题型:解答题

如图,已知平面直角坐标系xOy中,点A(m,6),B(n,1)为两动点,其中0<m<3,连接OA,OB,OA⊥OB.
(1)求证:mn=-6;
(2)当S△AOB=10时,抛物线经过A,B两点且以y轴为对称轴,求抛物线对应的二次函数的关系式;
(3)在(2)的条件下,设直线AB交y轴于点F,过点F作直线l交抛物线于P,Q两点,问是否存在直线l,使S△POF:S△QOF=1:3?若存在,求出直线l对应的函数关系式;若不存在,请说明理由.

查看答案和解析>>

科目: 来源:第26章《二次函数》中考题集(38):26.3 实际问题与二次函数(解析版) 题型:解答题

如图1,在平面直角坐标系中,点A的坐标为(1,2),点B的坐标为(3,1),二次函数y=x2的图象记为抛物线l1
(1)平移抛物线l1,使平移后的抛物线过点A,但不过点B,写出平移后的一个抛物线的函数表达式:______(任写一个即可);
(2)平移抛物线l1,使平移后的抛物线过A,B两点,记为抛物线l2,如图2,求抛物线l2的函数表达式;
(3)设抛物线l2的顶点为C,K为y轴上一点.若S△ABK=S△ABC,求点K的坐标;
(4)请在图3上用尺规作图的方式探究抛物线l2上是否存在点P,使△ABP为等腰三角形.若存在,请判断点P共有几个可能的位置(保留作图痕迹);若不存在,请说明理由.

查看答案和解析>>

科目: 来源:第26章《二次函数》中考题集(38):26.3 实际问题与二次函数(解析版) 题型:解答题

如图1,已知点A1,A2,A3是抛物线y=x2上的三点,线段A1B1,A2B2,A3B3都垂直于x轴,垂足分别为点B1,B2,B3,延长线段B2A2交线段A1A3于点C.
(1)在图(1)中,若点A1,A2,A3的横坐标依次为1,2,3,求线段CA2的长;
(2)若将抛物线改为y=x2-x+1,如图2,点A1,A2,A3的横坐标依次为三个连续整数,其他条件不变,求线段CA2的长.

查看答案和解析>>

同步练习册答案