相关习题
0 129580 129588 129594 129598 129604 129606 129610 129616 129618 129624 129630 129634 129636 129640 129646 129648 129654 129658 129660 129664 129666 129670 129672 129674 129675 129676 129678 129679 129680 129682 129684 129688 129690 129694 129696 129700 129706 129708 129714 129718 129720 129724 129730 129736 129738 129744 129748 129750 129756 129760 129766 129774 366461
科目:
来源:第26章《二次函数》中考题集(28):26.3 实际问题与二次函数(解析版)
题型:解答题
如图,直线y=x-3于x轴、y轴分别交于B、C;两点,抛物线y=x
2+bx+c同时经过B、C两点,点
A是抛物线与x轴的另一个交点.
(1)求抛物线的函数表达式;
(2)若点P在线段BC上,且S
△PAC=
S
△PAB,求点P的坐标.
查看答案和解析>>
科目:
来源:第26章《二次函数》中考题集(28):26.3 实际问题与二次函数(解析版)
题型:解答题
如图,已知点A(3,0),以A为圆心作⊙A与Y轴切于原点,与x轴的另一个交点为B,过B作⊙A的切线l.
(1)以直线l为对称轴的抛物线过点A及点C(0,9),求此抛物线的解析式;
(2)抛物线与x轴的另一个交点为D,过D作⊙A的切线DE,E为切点,求此切线长;
(3)点F是切线DE上的一个动点,当△BFD与EAD△相似时,求出BF的长.
查看答案和解析>>
科目:
来源:第26章《二次函数》中考题集(28):26.3 实际问题与二次函数(解析版)
题型:解答题
如图,在平面直角坐标系中,已知点A坐标为(2,4),直线x=2与x轴相交于点B,连接OA,抛物线y=x
2从点O沿OA方向平移,与直线x=2交于点P,顶点M到A点时停止移动.
(1)求线段OA所在直线的函数解析式;
(2)设抛物线顶点M的横坐标为m,
①用m的代数式表示点P的坐标;
②当m为何值时,线段PB最短;
(3)当线段PB最短时,相应的抛物线上是否存在点Q,使△QMA的面积与△PMA的面积相等?若存在,请求出点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:
来源:第26章《二次函数》中考题集(28):26.3 实际问题与二次函数(解析版)
题型:解答题
已知抛物线y=ax
2+bx+c(a>0)的图象经过点B(12,0)和C(0,-6),对称轴为x=2.
(1)求该抛物线的解析式;
(2)点D在线段AB上且AD=AC,若动点P从A出发沿线段AB以每秒1个单位长度的速度匀速运动,同时另一动点Q以某一速度从C出发沿线段CB匀速运动,问是否存在某一时刻,使线段PQ被直线CD垂直平分?若存在,请求出此时的时间t(秒)和点Q的运动速度;若不存在,请说明理由;
(3)在(2)的结论下,直线x=1上是否存在点M,使△MPQ为等腰三角形?若存在,请求出所有点M的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:
来源:第26章《二次函数》中考题集(28):26.3 实际问题与二次函数(解析版)
题型:解答题
如图,已知点A(-3,0)和B(1,0),直线y=kx-4经过点A并且与y轴交于点C.
(1)求点C的坐标;
(2)求经过A、B、C三点的抛物线的解析式和对称轴;
(3)半径为1个单位长度的动圆⊙P的圆心P始终在抛物线的对称轴上.当点P的纵坐标为5时,将⊙P以每秒1个单位长度的速度在抛物线的对称轴上移动.那么,经过几秒,⊙P与直线AC开始有公共点?经过几秒后,⊙P与直线AC不再有公共点?
查看答案和解析>>
科目:
来源:第26章《二次函数》中考题集(28):26.3 实际问题与二次函数(解析版)
题型:解答题
如图所示,已知直线y=
x与抛物线y=ax
2+b(a≠0)交于A(-4,-2),B(6,3)两点.抛物线与y轴的交点为C.
(1)求这个抛物线的解析式;
(2)在抛物线上存在点M,是△MAB是以AB为底边的等腰三角形,求点M的坐标;
(3)在抛物线上是否存在点P使得△PAC的面积是△ABC面积的
?若存在,试求出此时点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:
来源:第26章《二次函数》中考题集(28):26.3 实际问题与二次函数(解析版)
题型:解答题
如图1,抛物线
与x轴交于A、C两点,与y轴交于B点,与直线y=kx+b交于A、D两点.
(1)直接写出A、C两点坐标和直线AD的解析式;
(2)如图2,质地均匀的正四面体骰子的各个面上依次标有数字-1、1、3、4.随机抛掷这枚骰子两次,把第一次着地一面的数字m记做P点的横坐标,第二次着地一面的数字n记做P点的纵坐标.则点P(m,n)落在图1中抛物线与直线围成区域内(图中阴影部分,含边界)的概率是多少?
查看答案和解析>>
科目:
来源:第26章《二次函数》中考题集(28):26.3 实际问题与二次函数(解析版)
题型:解答题
如图,已知二次函数y=-
+bx+c的图象经过A(2,0)、B(0,-6)两点.
(1)求这个二次函数的解析式;
(2)设该二次函数的对称轴与x轴交于点C,连接BA、BC,求△ABC的面积.
查看答案和解析>>
科目:
来源:第26章《二次函数》中考题集(28):26.3 实际问题与二次函数(解析版)
题型:解答题
已知抛物线y=ax
2+bx+c经过A(-4,3)、B(2,0)两点,当x=3和x=-3时,这条抛物线上对应点的纵坐标相等.经过点C(0,-2)的直线l与x轴平行,O为坐标原点.
(1)求直线AB和这条抛物线的解析式;
(2)以A为圆心,AO为半径的圆记为⊙A,判断直线l与⊙A的位置关系,并说明理由;
(3)设直线AB上的点D的横坐标为-1,P(m,n)是抛物线y=ax
2+bx+c上的动点,当△PDO的周长最小时,求四边形CODP的面积.
查看答案和解析>>
科目:
来源:第26章《二次函数》中考题集(28):26.3 实际问题与二次函数(解析版)
题型:解答题
如图,已知点B(1,3),C(1,0),直线y=x+k经过点B,且与x轴交于点A,将△ABC沿直线AB折叠得到△ABD.
(1)填空:A点坐标为(______,______),D点坐标为(______,______);
(2)若抛物线y=
x
2+bx+c经过C,D两点,求抛物线的解析式;
(3)将(2)中的抛物线沿y轴向上平移,设平移后所得抛物线与y轴交点为E,点M是平移后的抛物线与直线AB的公共点,在抛物线平移过程中是否存在某一位置使得直线EM∥x轴.若存在,此时抛物线向上平移了几个单位?若不存在,请说明理由.
(提示:抛物线y=ax
2+bx+c(a≠0)的对称轴是x=-
,顶点坐标是(-
,
)
查看答案和解析>>