相关习题
 0  129591  129599  129605  129609  129615  129617  129621  129627  129629  129635  129641  129645  129647  129651  129657  129659  129665  129669  129671  129675  129677  129681  129683  129685  129686  129687  129689  129690  129691  129693  129695  129699  129701  129705  129707  129711  129717  129719  129725  129729  129731  129735  129741  129747  129749  129755  129759  129761  129767  129771  129777  129785  366461 

科目: 来源:第26章《二次函数》中考题集(22):26.3 实际问题与二次函数(解析版) 题型:解答题

如图,把一张长10cm,宽8cm的矩形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子(纸板的厚度忽略不计).
(1)要使长方体盒子的底面积为48cm2,那么剪去的正方形的边长为多少;
(2)你感到折合而成的长方体盒子的侧面积会不会有更大的情况?如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由;
(3)如果把矩形硬纸板的四周分别剪去2个同样大小的正方形和2个同样形状、同样大小的矩形,然后折合成一个有盖的长方体盒子,是否有侧面积最大的情况?如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由.

查看答案和解析>>

科目: 来源:第26章《二次函数》中考题集(22):26.3 实际问题与二次函数(解析版) 题型:解答题

我州有一种可食用的野生菌,上市时,外商李经理按市场价格30元/千克收购了这种野生菌1000千克存放入冷库中,据预测,该野生菌的市场价格将以每天每千克上涨1元;但冷冻存放这批野生菌时每天需要支出各种费用合计310元,而且这类野生菌在冷库中最多保存160天,同时,平均每天有3千克的野生菌损坏不能出售.
(1)设x天后每千克该野生菌的市场价格为y元,试写出y与x之间的函数关系式.
(2)若存放x天后,将这批野生菌一次性出售,设这批野生菌的销售总额为P元,试写出P与x之间的函数关系式.
(3)李经理将这批野生茵存放多少天后出售可获得最大利润W元?
(利润=销售总额-收购成本-各种费用)

查看答案和解析>>

科目: 来源:第26章《二次函数》中考题集(22):26.3 实际问题与二次函数(解析版) 题型:解答题

一家电脑公司推出一款新型电脑,投放市场以来的利润情况可以看做是抛物线的一部分,请结合下面的图象解答以下问题:
(1)求该抛物线对应的二次函数的解析式;
(2)该公司在经营此款电脑过程中,第几个月的利润最大,最大利润是多少;
(3)若照此经营下去,请你结合所学的知识,对公司在此款电脑的经营状况(是否亏损何时亏损)作出预测.

查看答案和解析>>

科目: 来源:第26章《二次函数》中考题集(22):26.3 实际问题与二次函数(解析版) 题型:解答题

一座拱桥的轮廓是抛物线型(如图1),拱高6m,跨度20m,相邻两支柱间的距离均为5m.
(1)将抛物线放在所给的直角坐标系中(如图2),求抛物线的解析式;
(2)求支柱EF的长度;
(3)拱桥下地平面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道能否并排行驶宽2m、高3m的三辆汽车(汽车间的间隔忽略不计)?请说明你的理由.

查看答案和解析>>

科目: 来源:第26章《二次函数》中考题集(22):26.3 实际问题与二次函数(解析版) 题型:解答题

某人定制了一批地砖,每块地砖(如图(1)所示)是边长为0.4米的正方形ABCD,点E、F分别在边BC和CD上,△CFE、△ABE和四边形AEFD均由单一材料制成,制成△CFE、△ABE和四边形AEFD的三种材料的每平方米价格依次为30元、20元、10元,若将此种地砖按图(2)所示的形式铺设,且能使中间的阴影部分组成四边形EFGH.
(1)判断图(2)中四边形EFGH是何形状,并说明理由;
(2)E、F在什么位置时,定制这批地砖所需的材料费用最省?

查看答案和解析>>

科目: 来源:第26章《二次函数》中考题集(22):26.3 实际问题与二次函数(解析版) 题型:解答题

跳绳时,绳甩到最高处时的形状是抛物线.正在甩绳的甲、乙两名同学拿绳的手间距AB为6米,到地面的距离AO和BD均为0.9米,身高为1.4米的小丽站在距点O的水平距离为1米的点F处,绳子甩到最高处时刚好通过她的头顶点E.以点O为原点建立如图所示的平面直角坐标系,设此抛物线的解析式为y=ax2+bx+0.9.
(1)求该抛物线的解析式;
(2)如果小华站在OD之间,且离点O的距离为3米,当绳子甩到最高处时刚好通过他的头顶,请你算出小华的身高;
(3)如果身高为1.4米的小丽站在OD之间,且离点O的距离为t米,绳子甩到最高处时超过她的头顶,请结合图象,写出t的取值范围______.

查看答案和解析>>

科目: 来源:第26章《二次函数》中考题集(22):26.3 实际问题与二次函数(解析版) 题型:解答题

四川汶川大地震发生后,我市某工厂A车间接到生产一批帐篷的订单,要求必须在12天(含12天)内完成.已知每顶帐篷的成本价为800元,该车间平时每天能生产帐篷20顶.为了加快进度,车间采取工人分批日夜加班,机器满负荷运转的生产方式,生产效率得到了提高.这样,第一天生产了22顶,以后每天生产的帐篷都比前一天多2顶.由于机器损耗等原因,当每天生产的帐篷达到30顶后,每增加1顶帐篷,当天生产的所有帐篷,平均每顶的成本就增加20元.设生产这批帐篷的时间为x天,每天生产的帐篷为y顶.
(1)直接写出y与x之间的函数关系式,并写出自变量x的取值范围.
(2)若这批帐篷的订购价格为每顶1200元,该车间决定把获得最高利润的那一天的全部利润捐献给灾区.设该车间每天的利润为W元,试求出W与x之间的函数关系式,并求出该项车间捐献给灾区多少钱?

查看答案和解析>>

科目: 来源:第26章《二次函数》中考题集(22):26.3 实际问题与二次函数(解析版) 题型:解答题

研究所对某种新型产品的产销情况进行了研究,为投资商在甲、乙两地生产并销售该产品提供了如下成果:第一年的年产量为x(吨)时,所需的全部费用y(万元)与x满足关系式y=x2+5x+90,投入市场后当年能全部售出,且在甲、乙两地每吨的售价p,p(万元)均与x满足一次函数关系.(注:年利润=年销售额-全部费用)
(1)成果表明,在甲地生产并销售x吨时,P=-x+14,请你用含x的代数式表示甲地当年的年销售额,并求年利润W(万元)与x之间的函数关系式;
(2)成果表明,在乙地生产并销售x吨时,P=-+n(n为常数),且在乙地当年的最大年利润为35万元.试确定n的值;
(3)受资金、生产能力等多种因素的影响,某投资商计划第一年生产并销售该产品18吨,根据(1),(2)中的结果,请你通过计算帮他决策,选择在甲地还是乙地产销才能获得较大的年利润?
参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是

查看答案和解析>>

科目: 来源:第26章《二次函数》中考题集(22):26.3 实际问题与二次函数(解析版) 题型:解答题

小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S(单位:平方米)随矩形一边长x(单位:米)的变化而变化.
(1)求S与x之间的函数关系式,并写出自变量x的取值范围;
(2)当x是多少时,矩形场地面积S最大,最大面积是多少?

查看答案和解析>>

科目: 来源:第26章《二次函数》中考题集(22):26.3 实际问题与二次函数(解析版) 题型:解答题

桂林红桥位于桃花江上,是桂林两江四湖的一道亮丽的风景线,该桥的部分横截面如图所示,上方可看作是一个经过A、C、B三点的抛物线,以桥面的水平线为x轴,经过抛物线的顶点C与x轴垂直的直线为y轴,建立直角坐标系,已知此桥垂直于桥面的相邻两柱之间距离为2米(图中用线段AD、CO、BE等表示桥柱)CO=1米,FG=2米.
(1)求经过A、B、C三点的抛物线的解析式.
(2)求柱子AD的高度.

查看答案和解析>>

同步练习册答案