科目: 来源:2014沪科版八年级上册(专题训练 状元笔记)数学:第12章 一次函数 沪科版 题型:044
阅读下面材料,再回答问题:
一般地,如果函数x=f(x)对于自变量取值范围的的任意x,都有f(-x)=-f(x),那么y=f(x)就叫做奇函数;如果y=f(x)对于自变量取值范围内的任意x,都有f(-x)=f(x),那么y=f(x)就叫做偶函数.
例如:f(x)=x3+x,当x取任意实数时,f(-x)=(-x)3+(-x)=-x3-x=-(x3+x),即f(-x)=-f(x),因此f(x)=x3+x为奇偶数.
又如f(x)=|x|,当x取任意实数时,f(-x)=|-x|=|x|=f(x),即f(-x)=f(x),因此f(x)=|x|是偶函数.
问题(1):下列函数中:①y=x4;②y=x2+1;③y=;④y=
;⑤y=x+
.奇函数有________,偶函数有________(只填序号).
问题(2):请你再分别写出一个奇函数、一个偶函数.
查看答案和解析>>
科目: 来源:2014沪科版八年级上册(专题训练 状元笔记)数学:第13章 三角形中的边角关系 沪科版 题型:044
如图,已知AB∥CD,探究∠1,∠2,∠3之间的关系,并写出证明过程.
查看答案和解析>>
科目: 来源:2014沪科版八年级上册(专题训练 状元笔记)数学:第13章 三角形中的边角关系 沪科版 题型:044
(1)如图①∠1+∠2与∠B+∠C有什么关系?为什么?
(2)把图①△ABC沿DE折叠,得到图②,填空:∠1+∠2________∠B+∠C(填“>”“<”“=”),当∠A=40°时,∠B+∠C+∠1+∠2=________.
(3)如图③,是由图①的△ABC沿DE折叠得到的,如果∠A=30°,则x+y=360°-(∠B+∠C+∠1+∠2)=360°-________=________,猜想∠BDA+∠CEA与∠A的关系为________.
查看答案和解析>>
科目: 来源:2014沪科版八年级上册(专题训练 状元笔记)数学:第13章 三角形中的边角关系 沪科版 题型:044
在研究三角形内角和等于180°的证明方法时,小明和小虎分别给出了下列证法.
小明:在△ABC中,延长BC到D,
∴∠ACD=∠A+∠B(三角形一个外角等于和它不相邻的两个内角的和).
又∵∠ACD+∠ACB=180°(平角定义),
∴∠A+∠B+∠ACB=180°(等式的性质).
小虎:在△ABC中,作CD⊥AB(如图),
∵CD⊥AB(已知),
∴∠ADC=∠BDC=90°(直角定义).
∴∠A+∠ACD=90°,∠B+∠BCD=90°(直角三角形两锐角互余).
∴∠A+∠ACD+∠B+∠BCD=180°(等式的性质).
∴∠A+∠B+∠ACB=180°.
请你判断上述两名同学的证法是否正确,如果不正确,写出一种你认为较简单的证明三角形内角和定理的方法,与同伴交流.
查看答案和解析>>
科目: 来源:2014沪科版八年级上册(专题训练 状元笔记)数学:第13章 三角形中的边角关系 沪科版 题型:044
如图,已知AB∥DE,试求证:∠A+∠ACD+∠D=3600(你有几种证法?)
查看答案和解析>>
科目: 来源:2014沪科版八年级上册(专题训练 状元笔记)数学:第13章 三角形中的边角关系 沪科版 题型:044
已知△ABC的高为AD,∠BAD=70o,∠CAD=20o,求∠BAC的度数.
查看答案和解析>>
科目: 来源:2014沪科版八年级上册(专题训练 状元笔记)数学:第13章 三角形中的边角关系 沪科版 题型:044
如图所示,已知∠xOy=90°,点A,B分别在射线Ox,Oy上移动,BE是∠ABy的平分线,BE的反向延长线与∠OAB的平分线交于点C,试问∠ACB的大小是否发生变化?
查看答案和解析>>
科目: 来源:2014沪科版八年级上册(专题训练 状元笔记)数学:第13章 三角形中的边角关系 沪科版 题型:044
湖边上有A,B两个村庄(如图),从A到B有两条路可走,即A→P→B和A→Q→B.试判别哪条路更短,并说明理由.
查看答案和解析>>
科目: 来源:2014沪科版八年级上册(专题训练 状元笔记)数学:第13章 三角形中的边角关系 沪科版 题型:044
已知△ABC中,三边长a,b,c都是整数,且满足a>b>c,a=8,那么满足条件的三角形共有多少个?
查看答案和解析>>
科目: 来源:2014沪科版八年级上册(专题训练 状元笔记)数学:第13章 三角形中的边角关系 沪科版 题型:044
一块模板如图所示,按规定AF与DE的延长线相交成70°,但交点不在模板上,不便测量,于是王师傅连接AD,测得∠FAD=34°,∠ADE=76°,请你根据这两个角度判断模板是否合格?并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com