科目: 来源: 题型:044
如图,一次函数的图象与轴、轴分别交于点A、B,以线段AB为边在第一象限内作等边△ABC,(1) 求△ABC的面积;(2) 如果在第二象限内有一点P(),试用含的式子表示四边形ABPO的面积,并求出当△ABP的面积与△ABC的面积相等时的值;(3) 在轴上,存在这样的点M,使△MAB为等腰三角形.请直接写出所有符合要求的点M的坐标.
查看答案和解析>>
科目: 来源: 题型:044
如图,AB是⊙O的直径,BC是⊙O的弦,⊙O的割线PDE垂直AB于点F,交BC于点G,连结PC,∠BAC=∠BCP,求解下列问题:
(1)求证:CP是⊙O的切线。
(2)当∠ABC=30°,BG=,CG=时,求以PD、PE的长为两根的一元二次方程。
(3)若(1)的条件不变,当点C在劣弧AD上运动时,应再具备什么条件可使结论BG2=BF·BO成立?试写出你的猜想,并说明理由。
查看答案和解析>>
科目: 来源: 题型:044
)如图,RtΔABC中,∠ACB=90°,AC=4,BA=5,点P是AC上的动点(P不与A、C重合)设PC=x,点P到AB的距离为y。
(1
)求y与x的函数关系式;(2
)试讨论以P为圆心,半径为x的圆与AB所在直线的位置关系,并指出相应的x的取值范围。
查看答案和解析>>
科目: 来源: 题型:044
如图所示,在平面直角坐标中,抛物线的顶点P到轴的距离是4,抛物线与轴相交于O、M两点,OM=4;矩形ABCD的边BC在线段的OM上,点A、D在抛物线上。
⑴请写出P、M两点坐标,并求出这条抛物线的解析式;
⑵设矩形ABCD的周长为,求的最大值;
⑶连结OP、PM,则△PMO为等腰三角形,请判断在抛物线上是否存在点Q(除点M外),使得△OPQ也是等腰三角形,简要说明你的理由。
查看答案和解析>>
科目: 来源: 题型:044
有一根直尺的短边长2㎝,长边长10㎝,还有一块锐角为45°的直角三角形纸板,它的斜边长12cm..如图1,将直尺的短边DE放置与直角三角形纸板的斜边AB重合,且点D与点A重合.将直尺沿AB方向平移(如图13),设平移的长度为xcm(0≤x≤10),直尺和三角形纸板的重叠部分(图中阴影部分)的面积为S㎝2.
(1)当x=0时(如图1),S=_____________;当x = 10时,S =______________.
(2) 当0<x≤4时(如图2),求S关于x的函数关系式;
(3)
当4<x<10时,求S关于x的函数关系式,并求出S的最大值(同学可在图3、图4中画草图).查看答案和解析>>
科目: 来源: 题型:044
已知:在平面直角坐标系xOy中,一次函数的图象与x轴交于点A,抛物线经过O、A两点。
(1)试用含a的代数式表示b;
(2)设抛物线的顶点为D,以D为圆心,DA为半径的圆被x轴分为劣弧和优弧两部分。若将劣弧沿x轴翻折,翻折后的劣弧落在⊙D内,它所在的圆恰与OD相切,求⊙D半径的长及抛物线的解析式;
(3)设点B是满足(2)中条件的优弧上的一个动点,抛物线在x轴上方的部分上是否存在这样的点P,使得?若存在,求出点P的坐标;若不存在,请说明理由。
查看答案和解析>>
科目: 来源: 题型:044
如图,在平面直角坐标系中,∠AOB=60°,点B坐标为(2,0),线段OA的长为6. 将△AOB绕点O逆时针旋转60°后,点A落在点C处,点B落在点D处.
⑴请在图中画出△COD;
⑵求点A旋转过程中所经过的路程(精确到0.1);
⑶求直线BC的解析式.
查看答案和解析>>
科目: 来源: 题型:044
)如图,已知半圆O的直径AB=4,将一个三角板的直角顶点固定在圆心O上,当三角板绕着点O转动时,三角板的两条直角边与半圆圆周分别交于C、D两点,连结AD、BC交于点E。(1)求证:△ACE∽△BDE;
(2)求证:BD=DE恒成立;
(3)设BD=x,求△AEC的面积y与x的函数关系式,并写出自变量x的取值范围。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com