科目: 来源: 题型:044
如图,平面直角坐标系中,四边形OABC为矩形,点A、B的坐标分别为(6,0),(6,8)。动点M、N分别从O、B同时出发,以每秒1个单位的速度运动。其中,点M沿OA向终点A运动,点N沿BC向终点C运动。过点N作NP⊥BC,交AC于P,连结MP。已知动点运动了x秒。
(1
)P点的坐标为( , );(用含x的代数式表示)(2
)试求 ⊿MPA面积的最大值,并求此时x的值。(3
)请你探索:当x为何值时,⊿MPA是一个等腰三角形?你发现了几种情况?写出你的研究成果。
查看答案和解析>>
科目: 来源: 题型:044
已知,如图,直角坐标系中的等腰梯形ABCD,AB∥CD,下底AB在x轴上,D在y轴上,M为AD的中点,过O作腰BC的垂线交BC于点E.
(1)求证:OM⊥OE;
(2
)若等腰梯形中AD所在的直线的解析式为,且,求过等腰梯形ABCD的三个顶点的抛物线的解析式。(3
)若点M在梯形ABCD内沿水平方向移动到N,且使四边形MNCD为平行四边形,抛物线上是否存在一点P,使S△PAB与四边形MNCD的面积相等,若存在,求出P点的坐标;若不存在,请说明理由。查看答案和解析>>
科目: 来源: 题型:044
已知,在Rt△OAB中,∠OAB=900,∠BOA=300,AB=2。若以O为坐标原点,OA所在直线为轴,建立如图所示的平面直角坐标系,点B在第一象限内。将Rt△OAB沿OB折叠后,点A落在第一象限内的点C处。
(1
)求点C的坐标;(2
)若抛物线(≠0)经过C、A两点,求此抛物线的解析式;(3
)若抛物线的对称轴与OB交于点D,点P为线段DB上一点,过P作轴的平行线,交抛物线于点M。问:是否存在这样的点P,使得四边形CDPM为等腰梯形?若存在,请求出此时点P的坐标;若不存在,请说明理由。注:抛物线
(≠0)的顶点坐标为,对称轴公式为查看答案和解析>>
科目: 来源: 题型:044
如图①,中,,.它的顶点的坐标为,顶点的坐标为,,点从点出发,沿的方向匀速运动,同时点从点出发,沿轴正方向以相同速度运动,当点到达点时,两点同时停止运动,设运动的时间为秒.
(1
)求的度数.(2
)当点在上运动时,的面积(平方单位)与时间(秒)之间的函数图象为抛物线的一部分,(如图②),求点的运动速度.(3
)求(2)中面积与时间之间的函数关系式及面积取最大值时点的坐标.(4
)如果点保持(2)中的速度不变,那么点沿边运动时,的大小随着时间的增大而增大;沿着边运动时,的大小随着时间的增大而减小,当点沿这两边运动时,使的点有几个?请说明理由.查看答案和解析>>
科目: 来源: 题型:044
如图,平面上一点从点出发,沿射线方向以每秒1个单位长度的速度作匀速运动,在运动过程中,以为对角线的矩形的边长;过点且垂直于射线的直线与点同时出发,且与点沿相同的方向、以相同的速度运动.
(1)在点运动过程中,试判断与轴的位置关系,并说明理由.
(2)设点与直线都运动了秒,求此时的矩形与直线在运动过程中所扫过的区域的重叠部分的面积(用含的代数式表示).
查看答案和解析>>
科目: 来源: 题型:044
如图,在直角坐标系中,矩形的顶点与坐标原点重合,顶点在坐标轴上,,.动点从点出发,以的速度沿轴匀速向点运动,到达点即停止.设点运动的时间为.
(1
)过点作对角线的垂线,垂足为点.求的长与时间的函数关系式,并写出自变量的取值范围;(2
)在点运动过程中,当点关于直线的对称点恰好落在对角线上时,求此时直线的函数解析式;(3
)探索:以三点为顶点的的面积能否达到矩形面积的?请说明理由.查看答案和解析>>
科目: 来源: 题型:044
已知点P(m,n)(m>0)在直线y=x+b(0<b<3)上,点A、B在x轴上(点A在点B的左边),线段AB的长度为b,设△PAB的面积为S,且S=b2+b,.
(1)若b=,求S的值;
(2)若S=4,求n的值;
(3
)若直线y=x+b(0<b<3)与y轴交于点C, △PAB是等腰三角形,当CA∥PB时,求b的值.查看答案和解析>>
科目: 来源: 题型:044
如图,平面直角坐标系中有一直角梯形OMNH,点H的坐标为(-8,0),点N的坐标为(-6,-4).
(1)画出直角梯形OMNH绕点O旋转180°的图形OABC,并写出顶点A,B,C的坐标(点M的对应点为A, 点N的对应点为B, 点H的对应点为C);
(2)求出过A,B,C三点的抛物线的表达式;
(3)截取CE=OF=AG=m,且E,F,G分别在线段CO,OA,AB上,求四边形BEFG的面积S与m之间的函数关系式,并写出自变量m的取值范围;面积S是否存在最小值?若存在,请求出这个最小值;若不存在,请说明理由;
(4)在(3)的情况下,四边形BEFG是否存在邻边相等的情况,若存在,请直接写出此时m的值,并指出相等的邻边;若不存在,说明理由.
查看答案和解析>>
科目: 来源: 题型:044
如图①,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在轴的正半轴上,点C在轴的正半轴上,OA=5,OC=4.
(1)在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,求D、E两点的坐标;
(2
)如图②,若AE上有一动点P(不与A、E重合)自A点沿AE方向向E点匀速运动,运动的速度为每秒1个单位长度,设运动的时间为秒,过P点作ED的平行线交AD于点M,过点M作AE的平行线交DE于点N.求四边形PMNE的面积S与时间之间的函数关系式;当取何值时,S有最大值?最大值是多少?(3)在(2)的条件下,当为何值时,以A、M、E为顶点的三角形为等腰三角形,并求出相应时刻点M的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com