科目: 来源:江苏省南京市2006年初中毕业生学业考试数学试题 题型:044
西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低多少元?
查看答案和解析>>
科目: 来源:江苏省南京市2006年初中毕业生学业考试数学试题 题型:044
如图,在矩形ABCD中,AB=2AD,线段EF=10.在EF上取一点M,分别以EM、MF为一边作矩形EMNH、矩形MFGN,使矩形MFGN∽矩形ABCD.令MN=x,当x为何值时,矩形EMNH的面积S有最大值?最大值是多少?
查看答案和解析>>
科目: 来源:江苏省南京市2006年初中毕业生学业考试数学试题 题型:044
某块试验田里的农作物每天的需水量y(千克)与生长时间x(天)之间的关系如折线图所示.这些农作物在第10天、第30天的需水量分别为2000千克、3000千克,在第40天后每天的需水量比前一天增加100千克.
(1)分别求出x≤40和x≥40时y与x之间的关系式;
(2)如果这些农作物每天的需水量大于或等于4000千克时需要进行人工灌溉,那么应从第几天开始进行人工灌溉?
查看答案和解析>>
科目: 来源:江苏省南京市2006年初中毕业生学业考试数学试题 题型:044
在平面直角坐标系中,直线l过点M(3,0),且平行于y轴.
(1)如果△ABC三个顶点的坐标分别是A(-2,0),B(-1,0),C(-1,2),△ABC关于y轴的对称图形是△A1B1C1,△A1B1C1关于直线l的对称图形是△A2B2C1,写出△A2B2C1的三个顶点的坐标;
(2)如果点P的坐标是(-a,0),其中a>0,点P关于y轴的对称点是P1,点P1关于直线l的对称点是P2,求PP2的长.
查看答案和解析>>
科目: 来源:江苏省南京市2006年初中毕业生学业考试数学试题 题型:044
某校有A、B两个餐厅,甲、乙、丙三名学生各自随机选择其中的一个餐厅用餐.
(1)求甲、乙、丙三名学生在同一个餐厅用餐的概率;
(2)求甲、乙、丙三名学生中至少有一人在B餐厅用餐的概率.
查看答案和解析>>
科目: 来源:江苏省连云港市2006年中等学校招生统一考试数学试题 题型:044
操作与探究:
(1)图①是一块直角三角形纸片.将该三角形纸片按如图方法折叠,是点A与点C重合,DE为折痕.试证明△CBE等腰三角形;
(2)再将图①中的△CBE沿对称轴EF折叠(如图②).通过折叠,原三角形恰好折成两个重合的矩形,其中一个是内接矩形,另一个是拼合(指无缝无重叠)所成的矩形,我们称这样的两个矩形为“组合矩形”.你能将图③中的△ABC折叠成一个组合矩形吗?如果能折成,请在图③中画出折痕;
(3)请你在图④的方格纸中画出一个斜三角形,同时满足下列条件:①折成的组合矩形为正方形;②顶点都在格点(各小正方形的顶点)上;
(4)有一些特殊的四边形,如菱形,通过折叠也能折成组合矩形(其中的内接矩形的四个顶点分别在原四边形的四条边上).请你进一步探究,一个非特殊的四边形(指除平行四边形、梯形外的四边形)满足何条件是,一定能折成组合矩形?
查看答案和解析>>
科目: 来源:江苏省连云港市2006年中等学校招生统一考试数学试题 题型:044
如图,⊙O是等腰三角形ABC的外接圆,AB=AC,延长BC至点D,使CD=AC,连接AD交⊙O与点E,连接BE、CE与AC交于点F.
(1)求证:△ABE≌△CDE;
(2)若AE=6,DE=9,求EF的长.
查看答案和解析>>
科目: 来源:江苏省连云港市2006年中等学校招生统一考试数学试题 题型:044
要在宽为28 m的海堤公路的路边安装路灯.路灯的灯臂长为3 m,且与灯柱成120°(如图所示),路灯采用圆锥形灯罩,灯罩的轴线与灯臂垂直.当灯罩的轴线通过公路路面的中线时,照明效果最理想.问:应设计多高的灯柱,才能取得最理想的照明效果?(精确到0.01 m,)
查看答案和解析>>
科目: 来源:江苏省连云港市2006年中等学校招生统一考试数学试题 题型:044
为了营造出“城在林中、道在绿中、房在园中、人在景中”的城市新景象,市园林局计划在一定时间内完成100万亩绿化任务.现为配合东部城区大开发的需要,市政府在调研后将原定计划调整为:绿化面积在原计划的基础上增加20%,并且需提前1年完成.园林局经测算知,要完成新的计划,平均每年的绿化面积必须比原计划平均每年多10万亩.求原计划平均每年的绿化面积.
查看答案和解析>>
科目: 来源:江苏省淮安市2006年中等学校招生文化统一考试数学试题 题型:044
王强与李刚两位同学在学习“概率”时.做抛骰子(均匀正方体形状)实验,他们共抛了54次,出现向上点数的次数如下表:
(1)请计算出现向上点数为3的频率及出现向上点数为5的频率.
(2)王强说:“根据实验,一次试验中出现向上点数为5的概率最大.”
李刚说:“如果抛540次,那么出现向上点数为6的次数正好是100次.”
请判断王强和李刚说法的对错.
(3)如果王强与李刚各抛一枚骰子.求出现向上点数之和为3的倍数的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com