科目: 来源:2008年江苏省连云港市初中毕业升学统一考试、数学试卷 题型:044
如图,在直角梯形纸片ABCD中,AB∥DC,∠A=90°,CD>AD,将纸片沿过点D的直线折叠,使点A落在边CD上的点E处,折痕为DF.连接EF并展开纸片.
(1)求证:四边形ADEF是正方形;
(2)取线段AF的中点G,连接EG,如果BG=CD,试说明四边形GBCE是等腰梯形.
查看答案和解析>>
科目: 来源:2008年江苏省苏州市初中毕业升学统一考试、数学试卷 题型:044
如图,在等腰梯形ABCD中,AD∥BC,AB=DC=5,AD=6,BC=12.动点P从D点出发沿DC以每秒1个单位的速度向终点C运动,动点Q从C点出发沿CB以每秒2个单位的速度向B点运动.两点同时出发,当P点到达C点时,Q点随之停止运动.
(1)梯形ABCD的面积等于________;
(2)当PQ∥AB时,P点离开D点的时间等于________秒;
(3)当P、Q、C三点构成直角三角形时,P点离开D点多少时间?
查看答案和解析>>
科目: 来源:2008年江苏省苏州市初中毕业升学统一考试、数学试卷 题型:044
如图,帆船A和帆船B在太湖湖面上训练,O为湖面上的一个定点,教练船静候于O点.训练时要求A、B两船始终关于O点对称.以O为原点.建立如图所示的坐标系,x轴、y轴的正方向分别表示正东、正北方向.设A、B两船可近似看成在双曲线上运动,湖面风平浪静,双帆远影优美.训练中当教练船与A、B两船恰好在直线y=x上时,三船同时发现湖面上有一遇险的C船,此时教练船测得C船在东南45°方向上,A船测得AC与AB的夹角为60°,B船也同时测得C船的位置(假设C船位置不再改变,A、B、C三船可分别用A、B、C三点表示).
(1)发现C船时,A、B、C三船所在位置的坐标分别为A(________,________)、B(________,________)和C(________,________);
(2)发现C船,三船立即停止训练,并分别从A、O、B三点出发沿最短路线同时前往救援,设A、B两船的速度相等,教练船与A船的速度之比为3∶4,问教练船是否最先赶到?请说明理由.
查看答案和解析>>
科目: 来源:2008年江苏省无锡市初中毕业升学统一考试、数学试卷 题型:044
在“5·12大地震”灾民安置工作中,某企业接到一批生产甲种板材24000 m2和乙种板材12000 m2的任务.
(1)已知该企业安排140人生产这两种板材,每人每天能生产甲种板材30 m2或乙种板材20 m2.问:应分别安排多少人生产甲种板材和乙种板材,才能确保他们用相同的时间完成各自的生产任务?
(2)某灾民安置点计划用该企业生产的这批板材搭建A,B两种型号的板房共400间,在搭建过程中,按实际需要调运这两种板材.已知建一间A型板房和一间B型板房所需板材及能安置的人数如下表所示:
问:这400间板房最多能安置多少灾民?
查看答案和解析>>
科目: 来源:2008年江苏省无锡市初中毕业升学统一考试、数学试卷 题型:044
如图,四边形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于E.
(1)求证:四边形AECD是菱形;
(2)若点E是AB的中点,试判断△ABC的形状,并说明理由.
查看答案和解析>>
科目: 来源:2008年江苏省扬州市初中毕业升学统一考试、数学试卷 题型:044
如图,在以O为圆心的两个同心圆中,AB经过圆心O,且与小圆相交于点A、与大圆相交于点B.小圆的切线AC与大圆相交于点D,且CO平分∠ACB.
(1)试判断BC所在直线与小圆的位置关系,并说明理由;
(2)试判断线段AC、AD、BC之间的数量关系,并说明理由;
(3)若AB=8 cm,BC=10 cm,求大圆与小圆围成的圆环的面积.(结果保留π)
查看答案和解析>>
科目: 来源:2008年江苏省扬州市初中毕业升学统一考试、数学试卷 题型:044
某校师生积极为汶川地震灾区捐款,在得知灾区急需帐篷后,立即到当地的一家帐篷厂采购,帐篷有两种规格:可供3人居住的小帐篷,价格每顶160元;可供10人居住的大帐篷,价格每顶400元.学校花去捐款96000元,正好可供2300人临时居住.
(1)求该校采购了多少顶3人小帐篷,多少顶10人大帐篷;
(2)学校现计划租用甲、乙两种型号的卡车共20辆将这批帐篷紧急运往灾区,已知甲型卡车每辆可同时装运4顶小帐篷和11顶大帐篷,乙型卡车每辆可同时装运12顶小帐篷和7顶大帐篷.如何安排甲、乙两种卡车可一次性将这批帐篷运往灾区?有哪几种方案?
查看答案和解析>>
科目: 来源:2008年江苏省扬州市初中毕业升学统一考试、数学试卷 题型:044
如图,在△ABD和ACE中,AB=AD,AC=AE,∠BAD=∠CAE,连接BC、DE相交于点F,BC与AD相交于点G.
(1)试判断线段BC、DE的数量关系,并说明理由;
(2)如果∠ABC=∠CBD,那么线段FD是线段FG和FB的比例中项吗?为什么?
查看答案和解析>>
科目: 来源:2008年江苏省徐州巿初中毕业升学统一考试、数学试卷 题型:044
已知四边形ABCD的对角线AC与BD交于点O,给出下列四个论断
①OA=OC ②AB=CD ③∠BAD=∠DCB ④AD∥BC
请你从中选择两个论断作为条件,以“四边形ABCD为平行四边形”作为结论,完成下列各题:
①构造一个真命题,画图并给出证明;
②构造一个假命题,举反例加以说明.
查看答案和解析>>
科目: 来源:2008年江苏省徐州巿初中毕业升学统一考试、数学试卷 题型:044
为缓解油价上涨给出租车待业带来的成本压力,某巿自2007年11月17日起,调整出租车运价,调整方案见下列表格及图像(其中a,b,c为常数)
设行驶路程xkm时,调价前的运价y1(元),调价后的运价为y2(元)如图,折线ABCD表示y2与x之间的函数关系式,线段EF表示当0≤x≤3时,y1与x的函数关系式,根据图表信息,完成下列各题:
①填空:a=________,b=________,c=________.
②写出当x>3时,y1与x的关系,并在上图中画出该函数的图象.
③函数y1与y2的图象是否存在交点?若存在,求出交点的坐标,并说明该点的实际意义,若不存在请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com