科目: 来源:2011年辽宁省阜新市初中毕业生学业考试数学试卷 题型:044
如图,点P是正方形ABCD对角线AC上一动点,点E在射线BC上,且PE=EB,连接PD,O为AC中点.
(1)如图(1),当点P在线段AO上时,试猜想PE与PD的数量关系和位置关系,不用说明理由;
(2)如图(2),当点P在线段OC上时,(1)中的猜想还成立吗?请说明理由;
(3)如图(3),当点PAC的延长线上时,请你在图3中画出相应的图形(尺规作图,保留作图痕迹,不写作法),并判断(1)中的猜想是否成立?若成立,请直接写出结论;若不成立,请说明理由.
查看答案和解析>>
科目: 来源:2011年辽宁省阜新市初中毕业生学业考试数学试卷 题型:044
随着人们生活水平的提高,轿车已进入平常百姓家,我市家庭轿车的拥有量也逐年增加.某汽车经销商计划用不低于228万元且不高于240万元的资金订购30辆甲、乙两种新款轿车.两种轿车的进价和售价如下表:
(1)请你帮助经销商算一算共有哪几种进货方案?
(2)如果按表中售价全部卖出,哪种进货方案获利最多?并求出最大利润.
(注:其他费用不计,利润=售价-进价)
查看答案和解析>>
科目: 来源:广西北海市2012年中考数学试题 题型:044
如图,在平面直角坐标系中有Rt△ABC,∠A=90°,AB=AC,A(-2,0)、B(0,1)、C(d,2).
(1)求d的值;
(2)将△ABC沿x轴的正方向平移,在第一象限内B、C两点的对应点、正好落在某反比例函数图像上.请求出这个反比例函数和此时的直线的解析式;
(3)在(2)的条件下,直线BC交y轴于点G.问是否存在x轴上的点M和反比例函数图像上的点P,使得四边形PGM是平行四边形.如果存在,请求出点M和点P的坐标;如果不存在,请说明理由.
查看答案和解析>>
科目: 来源:贵州省六盘水市2012年中考数学试题 题型:044
如下图,已知△ABC中,AB=10 cm,AC=8 cm,BC=6 cm.如果点P由B出发沿BA方向点A匀速运动,同时点Q由A出发沿AC方向向点C匀速运动,它们的速度均为2 cm/s.连接PQ,设运动的时间为t(单位:s)(0≤t≤4).解答下列问题:
(1)当t为何值时,PQ∥BC.
(2)设△AQP面积为S(单位:cm2),当t为何值时,S取得最大值,并求出最大值.
(3)是否存在某时刻t,使线段PQ恰好把△ABC的面积平分?若存在,求出此时t的值;若不存在,请说明理由.
(4)如下图,把△AQP沿AP翻折,得到四边形AQPQ′.那么是否存在某时刻t,使四边形AQPQ′为菱形?若存在,求出此时菱形的面积;若不存在,请说明理由.
查看答案和解析>>
科目: 来源:福建省泉州市2012年中考数学试题 题型:044
如图,点O为坐标原点,直线绕着点A(0,2)旋转,与经过点C(0,1)的二次函数交于不同的两点P、Q.
(1)求h的值;
(2)通过操作、观察算出△POQ面积的最小值;
(3)过点P、C作直线,与x轴交于点B,试问:在直线l的旋转过程中四边形AOBQ是否为梯形,若是,请说明理由;若不是,请指明其形状.
查看答案和解析>>
科目: 来源:甘肃省兰州市2012年中考数学试题 题型:044
如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(-3,0)、(0,4),抛物线y=x2+bx+c经过点B,且顶点在直线x=上.
(1)求抛物线对应的函数关系式;
(2)若把△ABO沿x轴向右平移得到△DCE,点A、B、O的对应点分别是D、C、E,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;
(3)在(2)的条件下,连接BD,已知对称轴上存在一点P使得△PBD的周长最小,求出P点的坐标;
(4)在(2)、(3)的条件下,若点M是线段OB上的一个动点(点M与点O、B不重合),过点M作∥BD交x轴于点N,连接PM、PN,设OM的长为t,△PMN的面积为S,求S和t的函数关系式,并写出自变量t的取值范围,S是否存在最大值?若存在,求出最大值和此时M点的坐标;若不存在,说明理由.
查看答案和解析>>
科目: 来源:甘肃省兰州市2012年中考数学试题 题型:044
若x1、x2是关于一元二次方程ax2+bx+c(a≠0)的两个根,则方程的两个根x1、x2和系数a、b、c有如下关系:x1+x2=-,x1·x2=.把它称为一元二次方程根与系数关系定理.如果设二次函数y=ax2+bx+c(a≠0)的图象与x轴的两个交点为A(x1,0),B(x2,0).利用根与系数关系定理可以得到A、B连个交点间的距离为:
AB=|x1-x2|====.
参考以上定理和结论,解答下列问题:
设二次函数y=ax2+bx+c(a>0)的图象与x轴的两个交点A(x1,0)、B(x2,0),抛物线的顶点为C,显然△ABC为等腰三角形.
(1)当△ABC为直角三角形时,求b2-4ac的值;
(2)当△ABC为等边三角形时,求b2-4ac的值.
查看答案和解析>>
科目: 来源:湖南省湘潭市2012年中考数学试题 题型:044
如图,抛物线y=ax2-x-2(a≠0)的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0).
(1)求抛物线的解析式;
(2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标;
(3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标.
查看答案和解析>>
科目: 来源:湖南省湘潭市2012年中考数学试题 题型:044
如图,在⊙O上位于直径AB的异侧有定点C和动点P,AC=AB,点P在半圆弧AB上运动(不与A、B两点重合),过点C作直线PB的垂线CD交PB于D点.
(1)如图1,求证:△PCD∽△ABC;
(2)当点P运动到什么位置时,△PCD≌△ABC?请在图2中画出△PCD并说明理由;
(3)如图3,当点P运动到CP⊥AB时,求∠BCD的度数.
查看答案和解析>>
科目: 来源:湖南省张家界市2012年中考数学试题 题型:044
如图,抛物线与x轴交于C、A两点,与y轴交于点B,OB=4点O关于直线AB的对称点为D,E为线段AB的中点.
(1)分别求出点A、点B的坐标
(2)求直线AB的解析式
(3)若反比例函数的图像过点D,求k值.
(4)两动点P、Q同时从点A出发,分别沿AB、AO方向向B、O移动,点P每秒移动1个单位,点Q每秒移动个单位,设△POQ的面积为S,移动时间为t,问:S是否存在最大值?若存在,求出这个最大值,并求出此时的t值,若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com